Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein
Genre
Journal ArticleDate
2014-01-01Author
Gonzalez, DHiblot, J
Darbinian, N
Miller, JC
Gotthard, G
Amini, S
Chabriere, E
Elias, M
Subject
Ancestral librairiesProtein engineering
Protein solubilization
Hydrophobic proteins
Phosphate-binding proteins
DING proteins
Permanent link to this record
http://hdl.handle.net/20.500.12613/5344
Metadata
Show full item recordDOI
10.1016/j.fob.2013.12.006Abstract
Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP) as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9Å, respectively). © 2014 The Authors.Citation to related work
WileyHas part
FEBS Open BioADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5326
Scopus Count
Collections
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/
Related items
Showing items related by title, author, creator and subject.
-
Quantifying Nucleoporin Stoichiometry Inside Single Nuclear Pore Complexes In vivoMi, L; Goryaynov, A; Lindquist, A; Rexach, M; Yang, W; Yang, Weidong|0000-0002-3554-3035 (2015-01-01)© 2015, Nature Publishing Group. All rights reserved. The nuclear pore complex (NPC) is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring-scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. NPCs are composed of ∼30 different nucleoporins (Nups), averaged at 8, 16 or 32 copies per NPC. This estimate has not been confirmed for individual NPCs in living cells due to the inherent difficulty of counting proteins inside single supramolecular complexes. Here we used single-molecule SPEED microscopy to directly count the copy-number of twenty-four different Nups within individual NPCs of live yeast, and found agreement as well as significant deviation from previous estimates. As expected, we counted 8 copies of four peripheral Nups and 16 copies of fourteen scaffold Nups. Unexpectedly, we counted a maximum of 16 copies of Nsp1 and Nic96, rather than 32 as previously estimated; and found only 10-15 copies of six other Nups, rather than 8 or 16 copies as expected. This in situ molecular-counting technology can test structure-function models of NPCs and other supramolecular structures in cells.
-
A Spiroligomer α-Helix Mimic That Binds HDM2, Penetrates Human Cells and Stabilizes HDM2 in Cell CultureBrown, ZZ; Akula, K; Arzumanyan, A; Alleva, J; Jackson, M; Bichenkov, E; Sheffield, JB; Feitelson, MA; Schafmeister, CE (2012-10-18)We demonstrate functionalized spiroligomers that mimic the HDM2-bound conformation of the p53 activation domain. Spiroligomers are stereochemically defined, functionalized, spirocyclic monomers coupled through pairs of amide bonds to create spiro-ladder oligomers [1]. Two series of spiroligomers were synthesized, one of structural analogs and one of stereochemical analogs, from which we identified compound 1, that binds HDM2 with a Kd value of 400 nM. The spiroligomer 1 penetrates human liver cancer cells through passive diffusion and in a dose-dependent and time-dependent manner increases the levels of HDM2 more than 30-fold in Huh7 cells in which the p53/HDM2 negative feed-back loop is inoperative. This is a biological effect that is not seen with the HDM2 ligand nutlin-3a. We propose that compound 1 modulates the levels of HDM2 by stabilizing it to proteolysis, allowing it to accumulate in the absence of a p53/HDM2 feedback loop. © 2012 Brown et al.
-
The retinoblastoma family: Twins or distant cousins?Claudio, PP; Tonini, T; Giordano, A; Giordano, Antonio|0000-0002-5959-016X (2002-09-23)The destiny of a cell - whether it undergoes division, differentiation or death - results from an intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma protein, known as pRb or p105. Two recently identified proteins, pRb2/p130 and p107, show structural and functional similarities to pRb, and these proteins and their orthologs make up the retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone deacetylases. The are found in the nucleus and their subnuclear localization depends on binding to the nuclear matrix. Members of the family form part of a signal-transduction pathway called the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression, differentiation and apoptosis in different organisms and cell types.