Hepatocystin is Essential for TRPM7 Function during Early Embryogenesis
Genre
Journal ArticleDate
2015-12-16Author
Overton, JDKomiya, Y
Mezzacappa, C
Nama, K
Cai, N
Lou, L
Fedeles, SV
Habas, R
Runnels, LW
Subject
AnimalsCell Line
Embryo, Nonmammalian
Embryonic Development
Gastrula
Glucosidases
Humans
Mice
TRPM Cation Channels
Xenopus Proteins
Xenopus laevis
Permanent link to this record
http://hdl.handle.net/20.500.12613/5174
Metadata
Show full item recordDOI
10.1038/srep18395Abstract
Mutations in protein kinase C substrate 80K-H (PRKCSH), which encodes for an 80 KDa protein named hepatocystin (80K-H, PRKCSH), gives rise to polycystic liver disease (PCLD). Hepatocystin functions as the noncatalytic beta subunit of Glucosidase II, an endoplasmic reticulum (ER)-resident enzyme involved in processing and quality control of newly synthesized glycoproteins. Patients harboring heterozygous germline mutations in PRKCSH are thought to develop renal cysts as a result of somatic loss of the second allele, which subsequently interferes with expression of the TRP channel polycystin-2 (PKD2). Deletion of both alleles of PRKCSH in mice results in embryonic lethality before embryonic day E11.5. Here, we investigated the function of hepatocystin during Xenopus laevis embryogenesis and identified hepatocystin as a binding partner of the TRPM7 ion channel, whose function is required for vertebrate gastrulation. We find that TRPM7 functions synergistically with hepatocystin. Although other N-glycosylated proteins are critical to early development, overexpression of TRPM7 in Xenopus laevis embryos was sufficient to fully rescue the gastrulation defect caused by loss of hepatocystin. We observed that depletion of hepatocystin in Xenopus laevis embryos decreased TRPM7 expression, indicating that the early embryonic lethality caused by loss of hepatocystin is mainly due to impairment of TRPM7 protein expression.Citation to related work
Springer Science and Business Media LLCHas part
Scientific ReportsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5156