A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers
Genre
Journal ArticleDate
2008-10-01Author
Foulkes, ASYucel, R
Li, X
Subject
expectation conditional maximizationgenotype
haplotype
HIV-1
lipids
missing identifiers
mixed-effects models
phenotype
population-based genetic association studies
Permanent link to this record
http://hdl.handle.net/20.500.12613/5096
Metadata
Show full item recordDOI
10.1093/biostatistics/kxm055Abstract
This manuscript describes a novel, linear mixed-effects model-fitting technique for the setting in which correlated data indicators are not completely observed. Mixed modeling is a useful analytical tool for characterizing genotype-phenotype associations among multiple potentially informative genetic loci. This approach involves grouping individuals into genetic clusters, where individuals in the same cluster have similar or identical multilocus genotypes. In haplotype-based investigations of unrelated individuals, corresponding cluster assignments are unobservable since the alignment of alleles within chromosomal copies is not generally observed. We derive an expectation conditional maximization approach to estimation in the mixed modeling setting, where cluster assignments are ambiguous. The approach has broad relevance to the analysis of data with missing correlated data identifiers. An example is provided based on data arising from a cohort of human immunodeficiency virus type-1-infected individuals at risk for antiretroviral therapy-associated dyslipidemia. © 2008 The Authors.Citation to related work
Oxford University Press (OUP)Has part
BiostatisticsADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5078