On an additive partial correlation operator and nonparametric estimation of graphical models
Genre
Post-printDate
2016-09-01Author
Lee, KYLi, B
Zhao, H
Subject
Additive conditional covariance operatorAdditive conditional independence
Copula
Gaussian graphical model
Partial correlation
Reproducing kernel
Permanent link to this record
http://hdl.handle.net/20.500.12613/5032
Metadata
Show full item recordDOI
10.1093/biomet/asw028Abstract
© 2016 Biometrika Trust. We introduce an additive partial correlation operator as an extension of partial correlation to the nonlinear setting, and use it to develop a new estimator for nonparametric graphical models. Our graphical models are based on additive conditional independence, a statistical relation that captures the spirit of conditional independence without having to resort to high-dimensional kernels for its estimation. The additive partial correlation operator completely characterizes additive conditional independence, and has the additional advantage of putting marginal variation on appropriate scales when evaluating interdependence, which leads to more accurate statistical inference. We establish the consistency of the proposed estimator. Through simulation experiments and analysis of the DREAM4 Challenge dataset, we demonstrate that our method performs better than existing methods in cases where the Gaussian or copula Gaussian assumption does not hold, and that a more appropriate scaling for our method further enhances its performance.Citation to related work
Oxford University Press (OUP)Has part
BiometrikaADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/5014