• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    LIPS: A light intensity-based positioning system for indoor environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1403.2331v1.pdf
    Size:
    884.2Kb
    Format:
    PDF
    Download
    Genre
    Pre-print
    Date
    2016-09-01
    Author
    Xie, B
    Chen, K
    Tan, G
    Lu, M
    Liu, Y
    Wu, J
    He, T
    Subject
    Design
    Algorithms
    Performance
    Light intensity
    indoor positioning
    LED sensor
    smartphones
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/5026
    
    Metadata
    Show full item record
    DOI
    10.1145/2953880
    Abstract
    © 2016 ACM. This article presents a Light Intensity-based Positioning System (LIPS) for indoor environments. The system uses off-the-shelf light-emitting diode lamps as signal sources and light sensors as signal receivers. The design is inspired by the observation that a light sensor has deterministic sensitivity to both the distance and incident angle of a light signal, an under-utilized feature of photodiodes now widely found on mobile devices. We develop a stable and accurate light intensity model to capture the phenomenon, based on which a new positioning principle, Multi-Face Light Positioning, is established that uses three collocated sensors to uniquely determine the receiver's position, assuming merely a single source of light. We have implemented a prototype on both dedicated embedded systems and smartphones. Experimental results show average positioning accuracy within 0.4m across different environments, with high stability against interferences from obstacles, ambient lights, temperature variation, and so on.
    Citation to related work
    Association for Computing Machinery (ACM)
    Has part
    ACM Transactions on Sensor Networks
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/5008
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.