Show simple item record

dc.creatorKoberda, T
dc.creatorMangahas, J
dc.creatorTaylor, SJ
dc.date.accessioned2021-01-25T20:48:49Z
dc.date.available2021-01-25T20:48:49Z
dc.date.issued2017-01-01
dc.identifier.issn0002-9947
dc.identifier.issn1088-6850
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4950
dc.identifier.otherFG6YR (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4968
dc.description.abstract© 2017 American Mathematical Society. We prove that finitely generated purely loxodromic subgroups of a right-angled Artin group A(Γ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups Mod(S). In particular, such subgroups are quasiconvex in A(Γ). In addition, we identify a milder condition for a finitely generated subgroup of A(Γ) that guarantees it is free, undistorted, and retains finite generation when intersected with A(Λ) for subgraphs Λ of Γ. These results have applications to both the study of convex cocompactness in Mod(S) and the way in which certain groups can embed in right-angled Artin groups.
dc.format.extent8179-8208
dc.language.isoen
dc.relation.haspartTransactions of the American Mathematical Society
dc.relation.isreferencedbyAmerican Mathematical Society (AMS)
dc.rightsAll Rights Reserved
dc.subjectRight-angled Artin group
dc.subjectextension graph
dc.subjectconvex cocompact sub-group
dc.subjectloxodromic isometry
dc.titleThe geometry of purely loxodromic subgroups of right-angled artin groups
dc.typeArticle
dc.type.genrePost-print
dc.relation.doi10.1090/tran/6933
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-01-25T20:48:46Z
refterms.dateFOA2021-01-25T20:48:50Z


Files in this item

Thumbnail
Name:
tran6933_AM.pdf
Size:
692.9Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record