• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2007.12052v1.pdf
    Size:
    2.137Mb
    Format:
    PDF
    Download
    Genre
    Pre-print
    Date
    2021-01-26
    Author
    Perdew, John P
    Ruzsinszky, Adrienn
    Sun, Jianwei
    Nepal, Niraj K
    Kaplan, Aaron D
    Subject
    density functional theory (DFT)
    jellium
    symmetry breaking
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4935
    
    Metadata
    Show full item record
    DOI
    10.1073/pnas.2017850118
    Abstract
    <jats:p>Strong correlations within a symmetry-unbroken ground-state wavefunction can show up in approximate density functional theory as symmetry-broken spin densities or total densities, which are sometimes observable. They can arise from soft modes of fluctuations (sometimes collective excitations) such as spin-density or charge-density waves at nonzero wavevector. In this sense, an approximate density functional for exchange and correlation that breaks symmetry can be more revealing (albeit less accurate) than an exact functional that does not. The examples discussed here include the stretched H<jats:sub>2</jats:sub> molecule, antiferromagnetic solids, and the static charge-density wave/Wigner crystal phase of a low-density jellium. Time-dependent density functional theory is used to show quantitatively that the static charge-density wave is a soft plasmon. More precisely, the frequency of a related density fluctuation drops to zero, as found from the frequency moments of the spectral function, calculated from a recent constraint-based wavevector- and frequency-dependent jellium exchange-correlation kernel.</jats:p>
    Citation to related work
    Proceedings of the National Academy of Sciences
    Has part
    Proceedings of the National Academy of Sciences
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/4917
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.