Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
Genre
Pre-printDate
2017-04-01Author
An, FPBalantekin, AB
Band, HR
Bishai, M
Blyth, S
Cao, D
Cao, GF
Cao, J
Cen, WR
Chan, YL
Chang, JF
Chang, LC
Chang, Y
Chen, HS
Chen, QY
Chen, SM
Chen, YX
Chen, Y
Cheng, JH
Cheng, J
Cheng, YP
Cheng, ZK
Cherwinka, JJ
Chu, MC
Chukanov, A
Cummings, JP
De Arcos, J
Deng, ZY
Ding, XF
Ding, YY
Diwan, MV
Dolgareva, M
Dove, J
Dwyer, DA
Edwards, WR
Gill, R
Gonchar, M
Gong, GH
Gong, H
Grassi, M
Gu, WQ
Guan, MY
Guo, L
Guo, XH
Guo, YH
Guo, Z
Hackenburg, RW
Han, R
Hans, S
He, M
Heeger, KM
Heng, YK
Higuera, A
Hor, YK
Hsiung, YB
Hu, BZ
Hu, T
Hu, W
Huang, EC
Huang, HX
Huang, XT
Huber, P
Huo, W
Hussain, G
Jaffe, DE
Jaffke, P
Jen, KL
Jetter, S
Ji, XP
Ji, XL
Jiao, JB
Johnson, RA
Jones, D
Joshi, J
Kang, L
Kettell, SH
Kohn, S
Kramer, M
Kwan, KK
Kwok, MW
Kwok, T
Langford, TJ
Lau, K
Lebanowski, L
Lee, J
Lee, JHC
Lei, RT
Leitner, R
Leung, JKC
Li, C
Li, DJ
Li, F
Li, GS
Li, QJ
Li, S
Li, SC
Li, WD
Li, XN
Li, YF
Li, ZB
Permanent link to this record
http://hdl.handle.net/20.500.12613/4917
Metadata
Show full item recordDOI
10.1103/PhysRevD.95.072006Abstract
© 2017 American Physical Society. A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GWth nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of νe's. Comparison of the νe rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors (∼1500-1950 m) relative to detectors near the reactors (∼350-600 m) allowed a precise measurement of νe disappearance. More than 2.5 million νe inverse beta-decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (December, 2011-July, 2012) with a subsequent 1013 days using the complete configuration of eight detectors (October, 2012-July, 2015). The νe rate observed at the far detectors relative to the near detectors showed a significant deficit, R=0.949±0.002(stat)±0.002(syst). The energy dependence of νe disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle sin22θ13=0.0841±0.0027(stat)±0.0019(syst) and the effective neutrino mass-squared difference of |Δmee2|=(2.50±0.06(stat)±0.06(syst))×10-3 eV2. Analysis using the exact three-flavor probability found Δm322=(2.45±0.06(stat)±0.06(syst))×10-3 eV2 assuming the normal neutrino mass hierarchy and Δm322=(-2.56±0.06(stat)±0.06(syst))×10-3 eV2 for the inverted hierarchy.Citation to related work
American Physical Society (APS)Has part
Physical Review DADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/4899