Show simple item record

dc.creatorBangasser, BL
dc.creatorShamsan, GA
dc.creatorChan, CE
dc.creatorOpoku, KN
dc.creatorTüzel, E
dc.creatorSchlichtmann, BW
dc.creatorKasim, JA
dc.creatorFuller, BJ
dc.creatorMcCullough, BR
dc.creatorRosenfeld, SS
dc.creatorOdde, DJ
dc.date.accessioned2021-01-22T21:01:47Z
dc.date.available2021-01-22T21:01:47Z
dc.date.issued2017-05-22
dc.identifier.issn2041-1723
dc.identifier.issn2041-1723
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4878
dc.identifier.other28530245 (pubmed)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4896
dc.description.abstract© The Author(s) 2017. Cell migration, which is central to many biological processes including wound healing and cancer progression, is sensitive to environmental stiffness, and many cell types exhibit a stiffness optimum, at which migration is maximal. Here we present a cell migration simulator that predicts a stiffness optimum that can be shifted by altering the number of active molecular motors and clutches. This prediction is verified experimentally by comparing cell traction and F-actin retrograde flow for two cell types with differing amounts of active motors and clutches: embryonic chick forebrain neurons (ECFNs; optimum ∼ 1 kPa) and U251 glioma cells (optimum ∼ 100 kPa). In addition, the model predicts, and experiments confirm, that the stiffness optimum of U251 glioma cell migration, morphology and F-actin retrograde flow rate can be shifted to lower stiffness by simultaneous drug inhibition of myosin II motors and integrin-mediated adhesions.
dc.format.extent15313-
dc.language.isoen
dc.relation.haspartNature Communications
dc.relation.isreferencedbySpringer Science and Business Media LLC
dc.rightsCC BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectActin Cytoskeleton
dc.subjectActins
dc.subjectAlgorithms
dc.subjectAnimals
dc.subjectCell Adhesion
dc.subjectCell Line, Tumor
dc.subjectCell Movement
dc.subjectChick Embryo
dc.subjectCollagen
dc.subjectDisease Progression
dc.subjectElastic Modulus
dc.subjectGlioma
dc.subjectHumans
dc.subjectIntegrins
dc.subjectMice
dc.subjectModels, Biological
dc.subjectModels, Statistical
dc.subjectMyosin Type II
dc.subjectNeurons
dc.subjectProsencephalon
dc.subjectRNA, Messenger
dc.titleShifting the optimal stiffness for cell migration
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1038/ncomms15313
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2021-01-22T21:01:43Z
refterms.dateFOA2021-01-22T21:01:48Z


Files in this item

Thumbnail
Name:
Shifting the optimal stiffness ...
Size:
1.846Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

CC BY
Except where otherwise noted, this item's license is described as CC BY