• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Pendular trapping conditions for ultracold polar molecules enforced by external electric fields

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1703.03839v1.pdf
    Size:
    11.48Mb
    Format:
    PDF
    Download
    Genre
    Pre-print
    Date
    2017-06-26
    Author
    Li, M
    Petrov, A
    Makrides, C
    Tiesinga, E
    Kotochigova, S
    Subject
    quant-ph
    quant-ph
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4879
    
    Metadata
    Show full item record
    DOI
    10.1103/PhysRevA.95.063422
    Abstract
    © 2017 American Physical Society. We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar Na23K40 polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7 between this field and the polarization of the optical laser lead to a trapping design for Na23K40 molecules where decoherence due to electric field strength and laser-intensity fluctuations, as well as fluctuations in the direction of its polarization, are kept to a minimum. One-standard-deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions, pairs of hyperfine-rotational states of v=0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.
    Citation to related work
    American Physical Society (APS)
    Has part
    Physical Review A
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/4861
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.