Show simple item record

dc.contributor.advisorWang, Rongsheng
dc.creatorBuuh, Zakey
dc.date.accessioned2021-01-18T20:19:26Z
dc.date.available2021-01-18T20:19:26Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4758
dc.description.abstractPost-translational modifications (PTMs) allot versatility to the biological functions of highly conserved proteins. Recently, modifications to non-histone proteins such as methylation, acetylation, phosphorylation, glycosylation, ubiquitination, and many more have been linked to the regulation of pivotal pathways related to cellular response and stability. Due to the broad spectrum of pathways PTMs are associated with, their dysregulation is often linked to oncogenesis and various autoimmune diseases. Proteins involved in the incorporation (writers), removal (erasers) and recognition (readers) of PTMs, and substrate proteins, are regarded as important biomarkers and potential therapeutic targets as a result of their role in detrimental pathways. Current methodologies to monitor PTM substrates rely on alkyne/azide-based chemical proteomics, which are inefficient due to their bulky nature. This steric hindrance has been shown to limit the metabolic incorporation of alkyne/azide tags via PTM writers on to substrate proteins and has limited the use of these chemical reporters to enzymes containing large active sites. One portion of this dissertation will focus on the development of a steric-free biorthogonal chemical tagging platform utilizing a fluorine-thiol displacement reaction. Fluorinated PTM cofactors/precursors are steric free and could be easily recognized and metabolized by PTM enzymes. Reaction development identified thiophenols as a suitable partner for the displacement reaction to convert fluorine to other useful functionalities, allowing for the labeling and enrichment of multiple acetylation substrates in cell lysates. Another goal of this dissertation was the synthesis of novel stapled peptide therapeutics with this FTDR platform. A library of unprotected peptides were cyclized with this methodology, and were found to promote sufficient levels of alpha helical stability. Biological evaluation of FTDR-based stapled peptides showed that this methodology produced compounds with enhanced stabilities, which were a significant upgrade to ring-closing metathesis-based peptides in regard to solubility and cell permeability. The final goal of this dissertation focuses on the synthesis of a novel PET imaging probe. Immuno-PET imaging is a rising field in cancer prognosis and therapy, yet current probes utilize full-length IgGs and random conjugation methods, that lead to conjugates with random stabilities and activities. In conjunction with biologist in our lab, a 64Cu chelating NOTA linker, tethered to a BCN moiety was site-specifically conjugated to Fab fragments. The smaller unnatural amino acid containing Fab fragments, specifically mutated with p-azidophenylalanine (pAzF), boasted improved pharmacokinetic profiles and allowed for site-specific conjugation via strain-promoted cycloaddition.
dc.format.extent259 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectOrganic chemistry
dc.titleDevelopment of a fluorine-thiol reaction platform for post-translational modification analysis and stapled peptide synthesis
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberWengryniuk, Sarah E.
dc.contributor.committeememberVoelz, Vincent
dc.contributor.committeememberBlass, Benjamin E.
dc.description.departmentChemistry
dc.relation.doihttp://dx.doi.org/10.34944/dspace/4740
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
dc.identifier.proqst14316
dc.creator.orcid0000-0001-7057-3478
dc.date.updated2021-01-14T17:06:46Z
dc.embargo.lift01/14/2023
dc.identifier.filenameBuuh_temple_0225E_14316.pdf


Files in this item

Thumbnail
Name:
Buuh_temple_0225E_14316.pdf
Size:
8.585Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record