• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SEISMIC INVESTIGATION OF THE MORPHOLOGY OF A TUNNEL CHANNEL OF THE GREEN BAY LOBE, WISCONSIN, USA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Barrette_temple_0225M_14303.pdf
    Size:
    3.739Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Barrette, Nolan Conroy
    Advisor
    Muto, Atsuhiro
    Committee member
    Davatzes, Nicholas
    Buynevich, Ilya V. (Ilya Val)
    Department
    Geology
    Subject
    Geology
    Subglacial
    Tunnel Channel
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4740
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4722
    Abstract
    Records of subglacial drainage features of previous ice sheets, such as tunnel channels (TCs), provide insight into drainage mechanisms of modern ice sheets. More than 60 tunnel channels were identified in the formerly glaciated landscape of Wisconsin, USA, in the footprint of the Green Bay Lobe of the Laurentide Ice Sheet. I used a combination of a reflection-seismic survey and a hydraulic-potential model to reveal the geometry of a TC and attempt to further understand the dynamics of TC formation. The seismic cross section along the Plainfield tunnel channel (PTC), 16 km up-ice from the terminal margin, shows an absence of a channelized feature in the subsurface. Therefore, the Plainfield tunnel channel likely initiates between 7-16 km up-ice from its terminus in a subglacial setting where the water-flow velocity may have increased, as dictated by the regional bed slope. Relatively fast subglacial water flow would have caused erosion at the ice-bed interface, whereas slower velocities produced little to no erosion of the underlying sediments. The hydraulic-potential model suggests a total area of ~107 km2 for potential subglacial lakes up-ice from the PTC, although this estimate is not sufficient to account for the volume of water needed to form the channel. However, when water does pool in subglacial lakes, permafrost in the area helps to seal in large amounts of water at the ice-bed interface. Additionally, an increase in traction at the bed after a single discharge event likely facilitates supraglacial lake formation. The supraglacial water sources subsequently drain into the subglacial system, which can cause successive subglacial drainage events to occur. The results from the seismic cross-section and the hydraulic-potential model, along with inferences from previous studies, indicate that the PTC is likely formed over several drainage events and had a substantial influence from moulin drainage of supraglacial water in addition to the water stored in subglacial lakes. The Laurentide Ice Sheet was able to store large amounts of subglacial water in this region due to the combination of an adverse bed slope, as well as expansive permafrost during the time of TC formation. This likely means that modern ice sheets, such as along the Western edge of the Greenland Ice Sheet or Thwaites Glacier in West Antarctica, could exhibit similar subglacial and supraglacial drainage behavior in areas with adverse bed slopes similar to this portion of the Laurentide Ice Sheet.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.