Fungal Communities in Sediments Along a Depth Gradient in the Eastern Tropical Pacific
Genre
Journal ArticleDate
2020-11-06Author
Rojas-Jimenez, KGrossart, HP
Cordes, E
Cortés, J
Permanent link to this record
http://hdl.handle.net/20.500.12613/4647
Metadata
Show full item recordDOI
10.3389/fmicb.2020.575207Abstract
© Copyright © 2020 Rojas-Jimenez, Grossart, Cordes and Cortés. Deep waters represent the largest biome on Earth and the largest ecosystem of Costa Rica. Fungi play a fundamental role in global biogeochemical cycling in marine sediments, yet, they remain little explored. We studied fungal diversity and community composition in several marine sediments from 16 locations sampled along a bathymetric gradient (from a depth of 380 to 3,474 m) in two transects of about 1,500 km length in the Eastern Tropical Pacific (ETP) of Costa Rica. Sequence analysis of the V7-V8 region of the 18S rRNA gene obtained from sediment cores revealed the presence of 787 fungal amplicon sequence variants (ASVs). On average, we detected a richness of 75 fungal ASVs per sample. Ascomycota represented the most abundant phylum with Saccharomycetes constituting the dominant class. Three ASVs accounted for ca. 63% of all fungal sequences: the yeast Metschnikowia (49.4%), Rhizophydium (6.9%), and Cladosporium (6.7%). We distinguished a cluster composed mainly by yeasts, and a second cluster by filamentous fungi, but we were unable to detect a strong effect of depth and the overlying water temperature, salinity, dissolved oxygen (DO), and pH on the composition of fungal communities. We highlight the need to understand further the ecological role of fungi in deep-sea ecosystems.Citation to related work
Frontiers Media SAHas part
Frontiers in MicrobiologyADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/4629