Show simple item record

dc.creatorAkino, Y
dc.creatorWu, H
dc.creatorOh, RJ
dc.creatorDas, IJ
dc.date.accessioned2020-12-16T19:51:35Z
dc.date.available2020-12-16T19:51:35Z
dc.date.issued2019-01-01
dc.identifier.issn1526-9914
dc.identifier.issn1526-9914
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4593
dc.identifier.other30548791 (pubmed)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4611
dc.description.abstract© 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine. Purpose: For scanning particle beam therapy, interference between scanning patterns and interfield organ motion may result in suboptimal dose within target volume. In this study, we developed a simple offline correction technique for uniform scanning proton beam (USPB) delivery to compensate for the interplay between scanning patterns and respiratory motion and demonstrate the effectiveness of our technique in treating liver cancer. Methods: The computed tomography (CT) and respiration data of two patients who had received stereotactic body radiotherapy for hepatocellular carcinoma were used. In the simulation, the relative beam weight delivered to each respiratory phase is calculated for each beam layer after treatment of each fraction. Respiratory phases with beam weights higher than 50% of the largest weight are considered “skipped phases” for the next fraction. For the following fraction, the beam trigger is regulated to prevent beam layers from starting irradiation in skipped phases by extending the interval between each layer. To calculate dose-volume histogram (DVH), the dose of the target volume at end-exhale (50% phase) was calculated as the sum of each energy layer, with consideration of displacement due to respiratory motion and relative beam weight delivered per respiratory phase. Results: For a single fraction, D1%, D99%, and V100% were 114%, 88%, and 32%, respectively, when 8 Gy/min of dose rate was simulated. Although these parameters were improved with multiple fractions, dosimetric inhomogeneity without motion management remained even at 30 fractions, with V100% 86.9% at 30 fractions. In contrast, the V100% values with adaptation were 96% and 98% at 20 and 30 fractions, respectively. We developed an offline correction technique for USPB therapy to compensate for the interplay effects between respiratory organ motion and USPB beam delivery. Conclusions: For liver tumor, this adaptive therapy technique showed significant improvement in dose uniformity even with fewer treatment fractions than normal USPB therapy.
dc.format.extent220-228
dc.language.isoen
dc.relation.haspartJournal of Applied Clinical Medical Physics
dc.relation.isreferencedbyWiley
dc.rightsCC BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectadaptive therapy
dc.subjectproton therapy
dc.subjectrespiratory motion
dc.subjectinterplay effects
dc.titleAn effective method to reduce the interplay effects between respiratory motion and a uniform scanning proton beam irradiation for liver tumors: A case study
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.1002/acm2.12508
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.creator.orcidWu, Huanmei|0000-0003-0346-6044
dc.date.updated2020-12-16T19:51:32Z
refterms.dateFOA2020-12-16T19:51:36Z


Files in this item

Thumbnail
Name:
An effective method to reduce ...
Size:
479.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

CC BY
Except where otherwise noted, this item's license is described as CC BY