Show simple item record

dc.creatorCooper, Daryl
dc.creatorFuter, David
dc.date.accessioned2020-12-16T18:17:16Z
dc.date.available2020-12-16T18:17:16Z
dc.date.issued2019
dc.identifier.issn1465-3060
dc.identifier.issn1364-0380
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4562
dc.identifier.otherHR7IP (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4580
dc.description.abstractThis paper proves that every finite volume hyperbolic 3-manifold M contains a ubiquitous collection of closed, immersed, quasi-Fuchsian surfaces. These surfaces are ubiquitous in the sense that their preimages in the universal cover separate any pair of disjoint, non-asymptotic geodesic planes. The proof relies in a crucial way on the corresponding theorem of Kahn and Markovic for closed 3-manifolds. As a corollary of this result and a companion statement about surfaces with cusps, we recover Wise's theorem that the fundamental group of M acts freely and cocompactly on a CAT(0) cube complex.
dc.format.extent241-298
dc.language.isoen
dc.relation.haspartGEOMETRY & TOPOLOGY
dc.relation.isreferencedbyMathematical Sciences Publishers
dc.rightsAll Rights Reserved
dc.subjectmath.GT
dc.subjectmath.GT
dc.subjectmath.GR
dc.subject57M50, 30F40, 20H10, 20F65
dc.titleUbiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3-manifolds
dc.typeArticle
dc.type.genrePre-print
dc.relation.doi10.2140/gt.2019.23.241
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.date.updated2020-12-16T18:17:14Z
refterms.dateFOA2020-12-16T18:17:17Z


Files in this item

Thumbnail
Name:
1705.02890v3.pdf
Size:
656.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record