Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction
Genre
Journal ArticleDate
2020-05-01Author
Shapovalov, MDunbrack, RL
Vucetic, S
Subject
AlgorithmsAmino Acid Sequence
Amino Acids
Databases, Protein
Deep Learning
Neural Networks, Computer
Protein Structure, Secondary
Proteins
Software
Permanent link to this record
http://hdl.handle.net/20.500.12613/4481
Metadata
Show full item recordDOI
10.1371/journal.pone.0232528Abstract
© 2020 Shapovalov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Protein secondary structure prediction remains a vital topic with broad applications. Due to lack of a widely accepted standard in secondary structure predictor evaluation, a fair comparison of predictors is challenging. A detailed examination of factors that contribute to higher accuracy is also lacking. In this paper, we present: (1) new test sets, Test2018, Test2019, and Test2018-2019, consisting of proteins from structures released in 2018 and 2019 with less than 25% identity to any protein published before 2018; (2) a 4-layer convolutional neural network, SecNet, with an input window of ±14 amino acids which was trained on proteins ≤25% identical to proteins in Test2018 and the commonly used CB513 test set; (3) an additional test set that shares no homologous domains with the training set proteins, according to the Evolutionary Classification of Proteins (ECOD) database; (4) a detailed ablation study where we reverse one algorithmic choice at a time in SecNet and evaluate the effect on the prediction accuracy; (5) new 4- and 5-label prediction alphabets that may be more practical for tertiary structure prediction methods. The 3-label accuracy (helix, sheet, coil) of the leading predictors on both Test2018 and CB513 is 81–82%, while SecNet’s accuracy is 84% for both sets. Accuracy on the non-homologous ECOD set is only 0.6 points (83.9%) lower than the results on the Test2018-2019 set (84.5%). The ablation study of features, neural network architecture, and training hyper-parameters suggests the best accuracy results are achieved with good choices for each of them while the neural network architecture is not as critical as long as it is not too simple. Protocols for generating and using unbiased test, validation, and training sets are provided. Our data sets, including input features and assigned labels, and SecNet software including third-party dependencies and databases, are downloadable from dunbrack.fccc.edu/ss and github.com/sh-maxim/ss.Citation to related work
Public Library of Science (PLoS)Has part
PLoS ONEADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/4463