• Login
    View Item 
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    •   Home
    • Faculty/ Researcher Works
    • Faculty/ Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simple hydrogenic estimates for the exchange and correlation energies of atoms and atomic ions, with implications for density functional theory

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2007.01917v2.pdf
    Size:
    176.9Kb
    Format:
    PDF
    Download
    Genre
    Pre-print
    Date
    2020-08-21
    Author
    Kaplan, AD
    Santra, B
    Bhattarai, P
    Wagle, K
    Chowdhury, STUR
    Bhetwal, P
    Yu, J
    Tang, H
    Burke, K
    Levy, M
    Perdew, JP
    Show allShow less
    Subject
    physics.chem-ph
    physics.chem-ph
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4460
    
    Metadata
    Show full item record
    DOI
    10.1063/5.0017805
    Abstract
    © 2020 Author(s). Exact density functionals for the exchange and correlation energies are approximated in practical calculations for the ground-state electronic structure of a many-electron system. An important exact constraint for the construction of approximations is to recover the correct non-relativistic large-Z expansions for the corresponding energies of neutral atoms with atomic number Z and electron number N = Z, which are correct to the leading order (-0.221Z5/3 and -0.021Z ln Z, respectively) even in the lowest-rung or local density approximation. We find that hydrogenic densities lead to Ex(N, Z) ≈ -0.354N2/3Z (as known before only for Z ≫ N ≫ 1) and Ec ≈ -0.02N ln N. These asymptotic estimates are most correct for atomic ions with large N and Z ≫ N, but we find that they are qualitatively and semi-quantitatively correct even for small N and N ≈ Z. The large-N asymptotic behavior of the energy is pre-figured in small-N atoms and atomic ions, supporting the argument that widely predictive approximate density functionals should be designed to recover the correct asymptotics. It is shown that the exact Kohn-Sham correlation energy, when calculated from the pure ground-state wavefunction, should have no contribution proportional to Z in the Z → ∞ limit for any fixed N.
    Citation to related work
    AIP Publishing
    Has part
    Journal of Chemical Physics
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.34944/dspace/4442
    Scopus Count
    Collections
    Faculty/ Researcher Works

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.