Genre
Journal ArticleDate
2018-07-10Author
Zhou, QTang, P
Liu, S
Pan, J
Yan, Q
Zhang, SC
Permanent link to this record
http://hdl.handle.net/20.500.12613/4436
Metadata
Show full item recordDOI
10.1073/pnas.1801181115Abstract
© 2018 National Academy of Sciences. All Rights Reserved. Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy.Citation to related work
Proceedings of the National Academy of SciencesHas part
Proceedings of the National Academy of Sciences of the United States of AmericaADA compliance
For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.eduae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.34944/dspace/4418