Show simple item record

dc.creatorChroni, A
dc.creatorVu, T
dc.creatorMiura, S
dc.creatorKumar, S
dc.date.accessioned2020-12-10T18:26:34Z
dc.date.available2020-12-10T18:26:34Z
dc.date.issued2019-12-01
dc.identifier.issn2072-6694
dc.identifier.issn2072-6694
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4273
dc.identifier.otherKC7VZ (isidoc)
dc.identifier.other31783570 (pubmed)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4291
dc.description.abstract© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Understanding tumor progression and metastatic potential are important in cancer biology. Metastasis is the migration and colonization of clones in secondary tissues. Here, we posit that clone migration events between tumors resemble the dispersal of individuals between distinct geographic regions. This similarity makes Bayesian biogeographic analysis suitable for inferring cancer cell migration paths. We evaluated the accuracy of a Bayesian biogeography method (BBM) in inferring metastatic patterns and compared it with the accuracy of a parsimony-based approach (metastatic and clonal history integrative analysis, MACHINA) that has been specifically developed to infer clone migration patterns among tumors. We used computer-simulated datasets in which simple to complex migration patterns were modeled. BBM and MACHINA were effective in reliably reconstructing simple migration patterns from primary tumors to metastases. However, both of them exhibited a limited ability to accurately infer complex migration paths that involve the migration of clones from one metastatic tumor to another and from metastasis to the primary tumor. Therefore, advanced computational methods are still needed for the biologically realistic tracing of migration paths and to assess the relative preponderance of different types of seeding and reseeding events during cancer progression in patients.
dc.format.extent1880-1880
dc.language.isoen
dc.relation.haspartCancers
dc.relation.isreferencedbyMDPI AG
dc.rightsCC BY
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectbiogeography
dc.subjectcancer
dc.subjectdispersal
dc.subjectmetastasis
dc.subjectmigration paths
dc.subjecttumor
dc.titleDelineation of tumor migration paths by using a bayesian biogeographic approach
dc.typeArticle
dc.type.genreJournal Article
dc.relation.doi10.3390/cancers11121880
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.creator.orcidKumar, Sudhir|0000-0002-9918-8212
dc.date.updated2020-12-10T18:26:30Z
refterms.dateFOA2020-12-10T18:26:35Z


Files in this item

Thumbnail
Name:
Delineation of Tumor Migration ...
Size:
2.640Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

CC BY
Except where otherwise noted, this item's license is described as CC BY