Show simple item record

dc.creatorZhan, D
dc.creatorYe, L
dc.creatorZhang, H
dc.creatorFang, B
dc.creatorLi, H
dc.creatorLiu, Y
dc.creatorDu, X
dc.creatorGuizani, M
dc.date.accessioned2020-12-09T22:16:32Z
dc.date.available2020-12-09T22:16:32Z
dc.date.issued2018-11-01
dc.identifier.issn0167-739X
dc.identifier.issn1872-7115
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/4207
dc.identifier.otherGT2WG (isidoc)
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4225
dc.description.abstract© 2018 Elsevier B.V. Cloud-assisted Cognitive Internet of Things has powerful data analytics abilities based on the computing and data storage capabilities of cloud virtual machines, which makes protecting virtual machine filesystem very important for the whole system security. Agentless periodic filesystem monitors are optimal solutions to protect cloud virtual machines because of the secure and low-overhead features. However, most of the periodic monitors usually scan all of the virtual machine filesystem or protected files in every scanning poll, so lots of secure files are scanned again and again even though they are not corrupted. In this paper, we propose a novel agentless periodic filesystem monitor framework for virtual machines with different image formats to improve the performance of agentless periodic monitors. Our core idea is to minimize the scope of the scanning files in both file integrity checking and virus detection. In our monitor, if a file is considered secure, it will not be scanned when it has not been modified. Since our monitor only scans the newly created and modified files, it can check fewer files than other filesystem monitors. To that end, we propose two monitor methods for different types of virtual machine disks to reduce the number of scanning files. For virtual machine with single disk image, we hook the backend driver to capture the disk modification information. For virtual machine with multiple copy-on-write images, we leverage the copy-on-write feature of QCOW2 images to achieve the disk modification analysis. In addition, our system can restore and remove the corrupted files. The experimental results show that our system is effective for both Windows and Linux virtual machines with different image formats and can reduce the number of scanning files and scanning time.
dc.format.extent209-219
dc.language.isoen
dc.relation.haspartFuture Generation Computer Systems
dc.relation.isreferencedbyElsevier BV
dc.rightsAll Rights Reserved
dc.subjectFilesystem monitor
dc.subjectMinimized scanning
dc.subjectHooking backend driver
dc.subjectCopy-on-write image analysis
dc.titleA high-performance virtual machine filesystem monitor in cloud-assisted cognitive IoT
dc.typeArticle
dc.type.genrePre-print
dc.relation.doi10.1016/j.future.2018.05.055
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.creator.orcidDu, Xiaojiang|0000-0003-4235-9671
dc.date.updated2020-12-09T22:16:30Z
refterms.dateFOA2020-12-09T22:16:33Z


Files in this item

Thumbnail
Name:
1804.01633v1.pdf
Size:
1.375Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record