• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    BLINDED EVALUATIONS OF EFFECT SIZES IN CLINICAL TRIALS: COMPARISONS BETWEEN BAYESIAN AND EM ANALYSES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Turkoz_temple_0225E_11371.pdf
    Size:
    2.324Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Turkoz, Ibrahim
    Advisor
    Sobel, Marc J.
    Committee member
    Heiberger, Richard M., 1945-
    Dong, Yuexiao
    Zhao, Zhigen
    Pinheiro, José C.
    Department
    Statistics
    Subject
    Statistics
    Pharmaceutical Sciences
    Adaptive Designs
    Bayesian Mixture Models
    Blinded Evaluations
    Em Algorithm
    Mcmc
    Secondary Endpoints
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4152
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4134
    Abstract
    Clinical trials are major and costly undertakings for researchers. Planning a clinical trial involves careful selection of the primary and secondary efficacy endpoints. The 2010 draft FDA guidance on adaptive designs acknowledges possible study design modifications, such as selection and/or order of secondary endpoints, in addition to sample size re-estimation. It is essential for the integrity of a double-blind clinical trial that individual treatment allocation of patients remains unknown. Methods have been proposed for re-estimating the sample size of clinical trials, without unblinding treatment arms, for both categorical and continuous outcomes. Procedures that allow a blinded estimation of the treatment effect, using knowledge of trial operational characteristics, have been suggested in the literature. Clinical trials are designed to evaluate effects of one or more treatments on multiple primary and secondary endpoints. The multiplicity issues when there is more than one endpoint require careful consideration for controlling the Type I error rate. A wide variety of multiplicity approaches are available to ensure that the probability of making a Type I error is controlled within acceptable pre-specified bounds. The widely used fixed sequence gate-keeping procedures require prospective ordering of null hypotheses for secondary endpoints. This prospective ordering is often based on a number of untested assumptions about expected treatment differences, the assumed population variance, and estimated dropout rates. We wish to update the ordering of the null hypotheses based on estimating standardized treatment effects. We show how to do so while the study is ongoing, without unblinding the treatments, without losing the validity of the testing procedure, and with maintaining the integrity of the trial. Our simulations show that we can reliably order the standardized treatment effect also known as signal-to-noise ratio, even though we are unable to estimate the unstandardized treatment effect. In order to estimate treatment difference in a blinded setting, we must define a latent variable substituting for the unknown treatment assignment. Approaches that employ the EM algorithm to estimate treatment differences in blinded settings do not provide reliable conclusions about ordering the null hypotheses. We developed Bayesian approaches that enable us to order secondary null hypotheses. These approaches are based on posterior estimation of signal-to-noise ratios. We demonstrate with simulation studies that our Bayesian algorithms perform better than existing EM algorithm counterparts for ordering effect sizes. Introducing informative priors for the latent variables, in settings where the EM algorithm has been used, typically improves the accuracy of parameter estimation in effect size ordering. We illustrate our method with a secondary analysis of a longitudinal study of depression.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.