• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ESTIMATING PARAMETERS OF A MULTI-CLASS IZHIKEVICH NEURON MODEL TO INVESTIGATE THE MECHANISMS OF DEEP BRAIN STIMULATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Tufts_temple_0225M_11472.pdf
    Size:
    6.376Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Tufts, Christopher
    Advisor
    Obeid, Iyad, 1975-
    Committee member
    Picone, Joseph
    Bai, Li
    Department
    Electrical and Computer Engineering
    Subject
    Electrical Engineering
    Neurosciences
    Deep Brain Stimulation
    Estimation
    Genetic Algorithm
    Hodgkin Huxley
    Izhikevich
    Parkinson's Disease
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4150
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4132
    Abstract
    The aim of the research is to provide a computationally efficient neural network model for the study of deep brain stimulation efficacy in the treatment of Parkinson's disease. An Izhikevich neuron model was used to accomplish this task and four classes of neurons were modeled. The parameters of each class were estimated using a genetic algorithm with a fitness function based on spike frequency as a function of input current. After computing the optimal parameters the neurons were interconnected to form the network model. The estimated parameters were capable of replicating the normal firing characteristics for each type of neuron, but failed to replicate richer spiking characteristics such as post-inhibitory bursting and tonic firing. Without these characteristics, the network was unable to produce biologically feasible results. Findings indicate the Izhikevich model relies heavily on manual tuning and must be trained under an extensive set of conditions to allow for the majority of spiking characteristics to be learned. The use of the Izhikevich model in a network simulation will always be limited to the characteristics trained on a single neuron. When connected to the network the neuron may be exposed to a variety of unlearned conditions and therefore may not be capable of replicating biologically realistic behavior.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.