• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Framework for Cooperative Wideband Spectrum Sensing Using the Robust Fast Fourier Aliasing-based Sparse Transform

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thibodeau_temple_0225M_12513.pdf
    Size:
    1.728Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    Thibodeau, Brian Michael
    Advisor
    Silage, Dennis
    Committee member
    Zhang, Yimin
    Obeid, Iyad, 1975-
    Department
    Electrical and Computer Engineering
    Subject
    Electrical Engineering
    Communication
    Cooperative Wideband Spectrum Sensing
    Robust Fast Fourier Aliasing-based Sparse Transform
    Sparse Fast Fourier Transform
    Sub-nyquist Wideband Spectrum Sensing
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4113
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4095
    Abstract
    This research considers the problem of cooperatively identifying the active bands in a wideband spectrum using the sparse Fast Fourier Transform (sFFT). Existing research has focused primarily on Compressed Sensing (CS) and Multi-Coset (MC) sampling, but recent developments in the sFFT have shown that a sparsely occupied spectrum can be efficiently reconstructed using multiple co-prime analog-to-digital converters (ADC) that sample below the Nyquist rate. Specifically, this research utilizes the Robust Fast Fourier Aliasing-based Sparse Transform (R-FFAST) and extends this algorithm for use in cooperative wideband spectrum sensing (CWSS). Unlike previous approaches that implement the sFFT for spectrum sensing, the R-FFAST framework was developed and analyzed using the mutual coherence and the restricted isometry property (RIP) from CS theory. This leads to reliable support estimation in the presence of additive white Gaussian noise (AWGN) while mitigating the computational complexity of CS reconstruction algorithms. This research makes the following contributions. First, this research extends the signal model from single tones to multi-band signals with clustered support. Second, it shows that each stage in the R-FFAST front-end can be decomposed into individual nodes that form a fully distributed cooperative network. Lastly, this research empirically develops a constant false alarm rate (CFAR) detector that is used to identify the active frequency bins during the reconstruction process. The primary result of this research is showing that reliable spectrum detection is only possible when the average sampling rate of the cooperative network is greater than or equal to the sparsity of the spectrum. Simulation results are provided to demonstrate the effectiveness of the proposed framework and validate the findings of this research.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.