• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Determining the ability of terrestrial time-lapse microgravity surveying on a glacier to find summer mass balance using gravitational modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXYoung-temple-0225M-13096.pdf
    Size:
    2.554Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Young, Emma Victoria
    Advisor
    Muto, Atsuhiro
    Committee member
    Nyquist, Jonathan
    Ravi, Sujith
    Department
    Geology
    Subject
    Geology
    Geographic Information Science and Geodesy
    Geophysics
    Glaciology
    Mass Balance
    Time-lapse Microgravity
    Wolverine Glacier
    Ak
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4083
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4065
    Abstract
    Mass loss of alpine glaciers presently account for about half of the cryospheric contribution to the global sea-level rise. Mass balance of alpine glaciers has predominantly been monitored by; (1) glaciological and hydrological methods, and (2) satellite gravimetric methods using data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission. However, the former can be logistically costly and have large extrapolation errors: measurements taken at monthly temporal scales are expensive and have a spatial resolution of roughly one kilometer. The latter provides monthly mass-balance estimates of aggregates of alpine glaciers, although the spatial resolution (~300 km) is far too coarse for assessing individual glaciers’ mass balance. Ground-based, time-lapse microgravity measurements can potentially overcome some of the disadvantages of the glaciological, hydrological, and satellite gravitational methods for assessing mass changes and their spatial distribution on a single glacier. Gravity models were utilized to predict the gravity signals of the summer-time mass balance, changes in the seasonal snow cover outside of the glacier, and the vertical gravity gradient (VGG) needed for the free-air correction on Wolverine Glacier, AK. The modeled gravity signal of the summer-time mass balance (average of -0.237 mGal) is more than an order of magnitude larger than the uncertainty of conventional relative gravimeters (±0.007 mGal). Therefore, modeling predict that the time-lapse gravitational method could detect the summer-time mass balance on Wolverine Glacier. The seasonal snow effect was shown to have the greatest influence (~ -0.15 mGal) on the outer 100 m boundary of the glacier and minimal effect (~ -0.02 mGal) towards the center, both larger than the uncertainty of relative gravimeters. The VGG has a positive deviation, about -0.1 to -0.2 mGal/m, from the normal VGG (-0.309 mGal/m). Thus, seasonal snow effect and VGG need to be correctly accounted for when processing gravity measurements to derive the residual gravity signal of the glacier mass balance. Accurate measurements of elevation changes, seasonal snow depth, and the VGG should be performed in future gravity surveys of glaciers.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.