Show simple item record

dc.contributor.advisorWang, Hong
dc.contributor.advisorYang, Xiao-Feng
dc.creatorYANG, JI YEON
dc.date.accessioned2020-11-05T19:50:44Z
dc.date.available2020-11-05T19:50:44Z
dc.date.issued2015
dc.identifier.other958157257
dc.identifier.urihttp://hdl.handle.net/20.500.12613/4072
dc.description.abstractPatients with chronic kidney disease (CKD) develop hyperhomocysteinemia (HHcy), have increased inflammatory monocytes (MC) and 10-times higher cardiovascular mortality than the general population. Here, we investigated HHcy-related MC differentiation in CKD. Twenty seven CKD and CVD, and 14 healthy subjects were recruited. CD40 was selected as a CKD-induced MC activation marker by mining for CKD-MC-mRNA screen database. We found that CD14++CD16+ MC, often denoted as inflammatory subset, soluble CD40 ligand (sCD40L), and TNFα/IL-6 levels were augmented in CVD and CKD subjects. CD40hiCD14++CD16+ MC, plasma homocysteine (Hcy) and S-adenosylhomocysteine (SAH) levels were increased in CVD and further elevated in CKD subjects. In cultured human peripheral blood mononuclear cells, CKD patient serum, Hcy, CD40L and TNFα/IL-6 induced CD40hiCD14++CD16+ MC differentiation, which was prevented by Hcy-lowering folic acid and neutralizing antibodies against TNFα and IL-6. Interestingly, CD14++CD16+ and CD40hiCD14++CD16+ MCs were negatively correlated with plasma S-adenosylmethionine/SAH (SAM/SAH) ratios, an indicator of methylation status, in CKD and CVD subjects. In white blood cells (WBC) isolated from CKD and CVD subjects with lower SAM/SAH ratios, hypomethylation was identified on the CG pair of NFκB consensus element in the core promoter located at the CpG island of CD40 gene by DNA methylation mapping using bisulfite converting pyrosequencing. Moreover, Hcy inhibited DNA methyltransferase-1 activity in cultured human blood MC. In conclusion, HHcy induces CD14++CD16+ and CD40hiCD14++CD16+ MC differentiation, at least in part, via sCD40L induction and CD40 DNA hypomethylation in CKD and CVD subjects. To study the role of CD40 in the development of kidney pathology and vascular disease, we then established mouse model of CKD-induced CVD (5/6 nephrectomy CKD model plus left carotid artery ligation) in CD40-/- mice. Bone marrow (BM)-derived cells were traced by the transplantation of BM cells from enhanced green fluorescent protein (EGFP) transgenic CD40+/+ mice after sublethal irradiation of the recipient CD40-/- mice. We demonstrated here that CKD accelerated carotid artery atherosclerosis, exacerbated metabolism, increased spleen weight and circulating CD40+ inflammatory MC, and further increased differentiation of mononuclear phagocytic cells (MPC); CD11b+F4/80- MC, CD11b+F4/80+ macrophage (Mϕ) and CD11c+CD11b+F4/80+ bone marrow-derived dendritic cell in the kidney and aorta, which were abolished by CD40-/- mice. We also found that CKD kidney elevated CD40 expression and induced MC chemotactic signals; CCL2, CCL12, and CCL5 chemokines, which were abolished in CD40-/- mice. In conclusion, our results suggest that CD40 induction in the chronic kidney disease mediates kidney chemokine production, which in turn contributes to acceleration of myeloid cell infiltration, MPC differentiation, and carotid artery atherosclerosis.
dc.format.extent199 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMedicine
dc.subjectCardiovascular Disease
dc.subjectCd40
dc.subjectChronic Kidney Disease
dc.subjectInflammation
dc.subjectMonocyte
dc.titleCD40 monocyte differentiation mediates tissue inflammation in chronic kidney disease
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberAshby, Barrie
dc.contributor.committeememberGallucci, Stefania
dc.contributor.committeememberMerali, Salim
dc.contributor.committeememberSusztak, Katalin
dc.description.departmentPharmacology
dc.relation.doihttp://dx.doi.org/10.34944/dspace/4054
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-11-05T19:50:44Z


Files in this item

Thumbnail
Name:
TETDEDXYANG-temple-0225E-12259.pdf
Size:
5.868Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record