• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large Scale Multiple Testing for High-Dimensional Nonparanormal Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXXu-temple-0225E-13616.pdf
    Size:
    4.277Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Xu, Yanhui
    Advisor
    Sarkar, S. K. (Sanat K.)
    Han, Xu
    Department
    Statistics
    Subject
    Statistics
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4068
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4050
    Abstract
    False discovery control in high dimensional multiple testing has been frequently encountered in many scientific research. Under the multivariate normal distribution assumption, \cite{fan2012} proposed an approximate expression for false discovery proportion (FDP) in large-scale multiple testing when a common threshold is used and provided a consistent estimate of realized FDP when the covariance matrix is known. They further extended their study when the covariance matrix is unknown \citep{fan2017}. However, in reality, the multivariate normal assumption is often violated. In this paper, we relaxed the normal assumption by developing a testing procedure on nonparanormal distribution which extends the Gaussian family to a much larger population. The nonparanormal distribution is indeed a high dimensional Gaussian copula with nonparametric marginals. Estimating the underlying monotone functions is key to good FDP approximation. Our procedure achieved minimal mean error in approximating the FDP compared with other methods in simulation studies. We gave theoretical investigations regarding the performance of estimated covariance matrix and false rejections. In real dataset setting, our method was able to detect more differentiated genes while still maintaining the FDP under a small level. This thesis provides an important tool for approximating FDP in a given experiment where the normal assumption may not hold. We also developed a dependence-adjusted procedure which provides more power than fixed-threshold method. Our procedure also show robustness for heavy-tailed data under a variety of distributions in numeric studies.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.