• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    MACHINE LEARNING-BASED ARTERIAL SPIN LABELING PERFUSION MRI SIGNAL PROCESSING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXXie-temple-0225E-14096.pdf
    Size:
    4.196Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Xie, Danfeng
    Advisor
    Bai, Li
    Committee member
    Wang, Ze
    Kim, Albert
    Lu, Xiaonan
    Ji, Bo, 1982-
    Department
    Electrical and Computer Engineering
    Subject
    Medical Imaging
    Electrical Engineering
    Arterial Spin Labeling
    Deep Learning
    Functional Magnetic Resonance Imaging
    Image Denoising
    Machine Learning
    Medical Imaging Processing
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4063
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4045
    Abstract
    Arterial spin labeling (ASL) perfusion Magnetic Resonance Imaging (MRI) is a noninvasive technique for measuring quantitative cerebral blood flow (CBF) but subject to an inherently low signal-to-noise-ratio (SNR), resulting in a big challenge for data processing. Traditional post-processing methods have been proposed to reduce artifacts, suppress non-local noise, and remove outliers. However, these methods are based on either implicit or explicit models of the data, which may not be accurate and may change across subjects. Deep learning (DL) is an emerging machine learning technique that can learn a transform function from acquired data without using any explicit hypothesis about that function. Such flexibility may be particularly beneficial for ASL denoising. In this dissertation, three different machine learning-based methods are proposed to improve the image quality of ASL MRI: 1) a learning-from-noise method, which does not require noise-free references for DL training, was proposed for DL-based ASL denoising and BOLD-to-ASL prediction; 2) a novel deep learning neural network that combines dilated convolution and wide activation residual blocks was proposed to improve the image quality of ASL CBF while reducing ASL acquisition time; 3) a prior-guided and slice-wise adaptive outlier cleaning algorithm was developed for ASL MRI. In the first part of this dissertation, a learning-from-noise method is proposed for DL-based method for ASL denoising. The proposed learning-from-noise method shows that DL-based ASL denoising models can be trained using only noisy image pairs, without any deliberate post-processing for obtaining the quasi-noise-free reference during the training process. This learning-from-noise method can also be applied to DL-based ASL perfusion prediction from BOLD fMRI as ASL references are extremely noisy in this BOLD-to-ASL prediction. Experimental results demonstrate that this learning-from-noise method can reliably denoise ASL MRI and predict ASL perfusion from BOLD fMRI, result in improved signal-to-noise-ration (SNR) of ASL MRI. Moreover, by using this method, more training data can be generated, as it requires fewer samples to generate quasi-noise-free references, which is particularly useful when ASL CBF data are limited. In the second part of this dissertation, we propose a novel deep learning neural network, i.e., Dilated Wide Activation Network (DWAN), that is optimized for ASL denoising. Our method presents two novelties: first, we incorporated the wide activation residual blocks with a dilated convolution neural network to achieve improved denoising performance in term of several quantitative and qualitative measurements; second, we evaluated our proposed model given different inputs and references to show that our denoising model can be generalized to input with different levels of SNR and yields images with better quality than other methods. In the final part of this dissertation, a prior-guided and slice-wise adaptive outlier cleaning (PAOCSL) method is proposed to improve the original Adaptive Outlier Cleaning (AOC) method. Prior information guided reference CBF maps are used to avoid bias from extreme outliers in the early iterations of outlier cleaning, ensuring correct identification of the true outliers. Slice-wise outlier rejection is adapted to reserve slices with CBF values in the reasonable range even they are within the outlier volumes. Experimental results show that the proposed outlier cleaning method improves both CBF quantification quality and CBF measurement stability.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.