• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Deletion of Glutamate Receptor Trafficking Proteins in the Medial Prefrontal Cortex and Their Sex-Specific Effects on Cocaine Addiction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXWickens-temple-0225E-13 ...
    Size:
    1.545Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Wickens, Megan Marie
    Advisor
    Briand, Lisa A.
    Committee member
    Bangasser, Debra A.
    Parikh, Vinay
    Wimmer, Mathieu
    Murty, Vishnu
    Rawls, Scott M.
    Department
    Psychology
    Subject
    Psychology
    Neurosciences
    Cocaine
    Glutamate
    Prefrontal Cortex
    Sex Differences
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4030
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/4012
    Abstract
    Dysregulation of glutamatergic signaling mechanisms is a component of many psychiatric diseases. A number of these diseases exhibit a bias toward one sex, yet the ways in which glutamate is affected by or modulates this bias is poorly understood. In cocaine addiction, women progress from initial use of the drug to substance use disorder faster than men, and have more difficulty remaining abstinent. The same is true in female rodents. We used a mouse model of cocaine self-administration to study the role of glutamate receptor trafficking proteins in cocaine addiction-like behavior in males and females. In the first set of experiments, mice received a conditional knockout of glutamate receptor interacting protein 1 (GRIP1) in the medial prefrontal cortex (mPFC). This led to an increase in motivation for cocaine as well as enhanced likelihood of relapse behavior, as measured by a progressive ratio schedule and cue-induced reinstatement, respectively. No sex differences were seen after prefrontal deletion of GRIP1. The next set of experiments used the same behavioral paradigm, but mice received a conditional knockout of protein interacting with C kinase 1 (PICK1) in the mPFC. PICK1 and GRIP1 are both involved in the activity dependent trafficking of the GluA2-containing AMPA receptor, but while GRIP1 maintains these receptors in the synapse, PICK1 internalizes them in response to a stimulus such as drug experience. The prefrontal deletion of PICK1 was predicted to decrease cue-reinstatement responding, and this was observed in the male mice. The female mice displayed an increase in cue-induced reinstatement responding, similar to the effects seen by prefrontal GRIP1 deletion. Sex differences in PICK1 have not previously been described in the literature. Our results suggest that PICK1 is involved in different baseline processes in females, and merit further study. The final set of experiments considered the interaction of gonadal hormones and PICK1 in males. Bilateral gonadectomy or sham surgery was combined with prefrontal PICK1 knockout to determine if circulating gonadal hormones could explain the results in males. After gonadectomy or sham surgery, there was no significant effect of prefrontal PICK1 deletion on cue-induced reinstatement. These results do not fully explain the sex difference observed in intact mice. Together, these studies suggest that baseline sex differences exist in PICK1-mediated mechanisms of cocaine reinstatement and that these differences are not due to the influence of gonadal hormones alone.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.