• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Acinus in Retinoic Acid Signaling Pathway

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXWang-temple-0225E-11691.pdf
    Size:
    5.894Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Wang, Fang
    Advisor
    Soprano, Dianne R.
    Committee member
    Chong, Parkson Lee-Gau
    Shore, Scott K.
    Gamero, Ana
    Soprano, Kenneth J.
    Department
    Biochemistry
    Subject
    Biochemistry
    Acinus
    Nuclear Speckles
    Pre-mrna Splicing
    Retinoic Acid
    Retinoic Acid Receptor
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/4010
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3992
    Abstract
    Retinoic acid receptor (RAR), a member of the steroid/thyroid hormone nuclear receptor superfamily, functions as a RA-dependent transcription activator bound to the RA response element (RARE) within the promoter or enhancer region of target genes. The transcriptional activity of RAR is modulated by a large number of coregulators including coactivators and corepressors. Acinus is a nuclear protein with three isoforms (Acinus-L, Acinus-S and Acinus-S'). Acinus-S' interacts with the A/B domain of RAR and represses RAR-regulated genes expression. Acinus (without isoform definition) has been identified as a component of nuclear speckles, the spliceosome and the exon junction complex (EJC), suggesting its localization in nuclear speckles and involvement in RNA processing. Acinus-S has been shown to localize in nuclear speckles. However, it is unclear whether the other two isoforms also localize in nuclear speckles. In addition, the role of Acinus in regulating pre-mRNA splicing is unclear. The goal of these studies was to examine the nuclear localization of Acinus-L and Acinus-S' and to determine the role of Acinus isoforms in RAR-dependent splicing. The sub-nuclear localization of Acinus-L and Acinus-S' was determined using fluorescence microscopy. Acinus-S' colocalizes with SC35 in nuclear speckles while Acinus-L localizes diffusely throughout the nucleoplasm. RA treatment has little effect on the sub-nuclear localization of Acinus-L and Acinus-S'. The domains/regions necessary for the distinct sub-nuclear localization of Acinus-L and Acinus-S' were identified. The speckled sub-nuclear localization of Acinus-S' is dependent on its C-terminal RS- and RD/E-rich region but is independent of the phosphorylation status of Ser-453 and Ser-604 within this region. The unique N-terminal SAP-motif of Acinus-L is responsible for its diffuse localization in the nucleus. Moreover, the sub-nuclear localization of Acinus isoforms is affected by each other, which is determined by the combinatorial effect of the more potent SAP motif of Acinus-L and the C-terminal RS- and RD/E-rich region in all Acinus isoforms. The C-terminal RS- and RD/E-rich region of Acinus mediates the colocalization of Acinus isoforms as well as with its interacting protein RNPS1. The role of Acinus isoforms in regulating pre-mRNA splicing was explored using in vivo splicing assays. Both Acinus-L and Acinus-S', with the activity of Acinus-L higher than that of Acinus-S', increase the splicing of a RA-responsive minigene containing a weak 5' splice site but not a RA-responsive minigene containing a strong 5' splice site. RA treatment further enhances the splicing activity of Acinus in a dose- and time-dependent manner, suggesting a RA-dependent activity in addition to a RA-independent activity of Acinus. The RA-independent effect of Acinus on the splicing of pre-mRNAs containing the weak 5' splice site occurs to varying degrees using minigene constructs containing several different promoters while the RA-dependent splicing activity of Acinus is specific for transcripts derived from the minigene driven by the RARE-containing promoter. This suggests that the ligand-dependent splicing activity of Acinus is related to the RA-activated RAR bound to the RARE. The ligand-dependent splicing activity of Acinus was further shown to be promoter-specific, depending on the ligand-dependent transcription activator. The RRM domain was identified to be necessary for the RA-dependent splicing activity of Acinus. The RA-independent splicing activity of Acinus is repressed by RNPS1. Unexpectedly, the C-terminal RS- and RD/E rich region is dispensable for the splicing activity of Acinus in regulating the minigene containing a weak 5' splice site. Importantly, measurement of the splicing of endogenous human RARâ and Bcl-x in vivo demonstrates that Acinus stimulates the use of the weaker alternative 5' splice site of these two genes in a RA-dependent manner for RARâ and in a RA-independent manner for Bcl-x. Taken together, these studies demonstrate the distinct sub-nuclear localization of Acinus-L and Acinus-S', and identified the domains that are responsible for their sub-nuclear localization, which shed light on possible distinct functions between Acinus isoforms. In addition, both Acinus-L and Acinus-S' have been shown to be splicing cofactors (with the activity of Acinus-L higher than that of Acinus-S') that facilitate constitutive splicing of pre-mRNAs containing a weak 5' splice site and regulate alternative splicing in favor of the isoform generated from the weaker alternative 5' splice site. Both Acinus-L and Acinus-S' have a RA-dependent splicing activity specific for RA-responsive genes, which suggests that Acinus functions in RAR-dependent splicing.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.