• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ESTIMATING R&D INTERACTION STRUCTURES AND SPILLOVER EFFECTS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXTsyawo-temple-0225E-141 ...
    Size:
    804.5Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2020
    Author
    Tsyawo, Emmanuel Selorm
    Advisor
    Callaway, Brantly Mercer, IV
    Committee member
    Rytchkov, Oleg
    Swanson, Charles E.
    Bean, Austin B.
    Murtazashvili, Irina
    Department
    Economics
    Subject
    Economics
    High-dimension
    R&d Spillovers
    Spatial Matrix
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3980
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3962
    Abstract
    Firms’ research and development (R&D) efforts are known to generate spillover effects on other firms’ outcomes, e.g., innovation and productivity. Policy recommendations that ignore spillover effects may not be optimal from a social perspective whence the importance of accounting for spillover effects. Quantifying R&D spillover effects typically requires a spatial matrix that characterises the structure of interaction between firms. In practice, the spatial matrix is often unknown due to factors that include multiplicity of forms of connectivity and unclear guidance from economic theory. Estimates can be biased if the spatial matrix is misspecified, and they can also be sensitive to the choice of spatial matrix. This dissertation develops robust techniques that estimate the spatial matrix alongside other parameters from data using a two-pronged approach: (1) model elements of the spatial matrix using spatial covariates (e.g., geographic and product market proximity) and a parameter vector of finite length and (2) estimate the spatial matrix as a set of parameters from panel data. Approaches (1) and (2) address two identification challenges - uncertainty over relevant forms of connectivity and high-dimensionality of the design matrix - in single-index models. In this three-chapter dissertation, the first approach is applied in the first and third chapters, while the second approach is applied in the third chapter. Chapter 1 proposes a parsimonious approach to estimating the spatial matrix and parameters from panel data when the spatial matrix is partly or fully unknown. By controlling for several forms of connectivity between firms, the approach is made robust to misspecification of the spatial matrix. Also, the flexibility of the approach allows data to determine the degrees of sparsity and asymmetry of the spatial matrix. The chapter establishes consistency and asymptotic normality of the MLE under conditional independence and conditional strong-mixing assumptions on the outcome variable. The empirical results confirm positive spillover and private effects of R&D on firm innovation. There is evidence of time-variation and asymmetry in the interaction structure between firms. Geographic proximity and product market proximity are confirmed as relevant forms of connectivity between firms. Moreover, connectivity between firms is not limited to often-assumed notions of proximity; it is also linked to past R&D and patenting behaviour of firms. Single-index models suffer non-identification due to rank deficiency when the design matrix is high-dimensional. Chapter 2 proposes an estimator that projects a high-dimensional parameter vector into a reduced consistently estimable one. This estimator generalises the assumption of sparsity which is required for shrinkage methods such as the Lasso, and it applies even if the high-dimensional parameter vector’s support is bounded away from zero. Monte Carlo simulations demonstrate high approximating ability, improved precision, and reduced bias of the estimator. The estimator is used to estimate the network structure between firms in order to quantify the spillover effects of R&D on productivity using panel data. The empirical results show that firms on average generate positive R&D spillovers on firm productivity. The spatial autoregressive (SAR) model has wide applicability in economics and social networks. It is used to estimate, for example, equilibrium and peer effects models. The SAR model, like other spatial econometric models, is not immune to challenges associated with misspecification or uncertainty over the spatial matrix. Chapter 3 applies the approach developed in Chapter 1 to estimate the spatial matrix in the SAR model with autoregressive disturbances in a parsimonious yet flexible way using GMM. The asymptotic properties of the GMM estimator are established, and Monte Carlo simulations show good small sample performance.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.