• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ON TWO NEW ESTIMATORS FOR THE CMS THROUGH EXTENSIONS OF OLS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhang_temple_0225E_12790.pdf
    Size:
    413.9Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2017
    Author
    Zhang, Yongxu
    Advisor
    Dong, Yuexiao
    Committee member
    Wei, William W. S.
    Chitturi, Pallavi
    Yang, Yang
    Department
    Statistics
    Subject
    Statistics
    Central Mean Space
    Dimension Reduction
    Multivariate Analysis
    Ols
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3928
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3910
    Abstract
    As a useful tool for multivariate analysis, sufficient dimension reduction (SDR) aims to reduce the predictor dimensionality while simultaneously keeping the full regression information, or some specific aspects of the regression information, between the response and the predictor. When the goal is to retain the information about the regression mean, the target of the inference is known as the central mean space (CMS). Ordinary least squares (OLS) is a popular estimator of the CMS, but it has the limitation that it can recover at most one direction in the CMS. In this dissertation, we introduce two new estimators of the CMS: the sliced OLS and the hybrid OLS. Both estimators can estimate multiple directions in the CMS. The dissertation is organized as follows. Chapter 1 provides a literature review about basic concepts and some traditional methods in SDR. Motivated from the popular SDR method called sliced inverse regression, sliced OLS is proposed as the first extension of OLS in Chapter 2. The asymptotic properties of sliced OLS, order determination, as well as testing predictor contribution through sliced OLS are studied in Chapter 2 as well. It is well-known that slicing methods such as sliced inverse regression may lead to different results with different number of slices. Chapter 3 proposes hybrid OLS as the second extension. Hybrid OLS shares the benefit of sliced OLS and recovers multiple directions in the CMS. At the same time, hybrid OLS improves over sliced OLS by avoiding slicing. Extensive numerical results are provided to demonstrate the desirable performances of the proposed estimators. We conclude the dissertation with some discussions about the future work in Chapter 4.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.