• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    REDEFINING THE MOLECULAR BASIS OF EPITHELIAL MESENCHYMAL TRANSITION IN BREAST CANCER METASTASIS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zhai_temple_0225M_11392.pdf
    Size:
    1021.Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Zhai, Yubo
    Advisor
    Russo, Jose, 1942-
    Grubmeyer, Charles
    Committee member
    Soprano, Dianne R.
    Hoffman, Barbara (Biochemist)
    Department
    Biochemistry
    Subject
    Biochemistry
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3916
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3898
    Abstract
    Metastasis is a multi-step process that begins with cancer cells migrating and invading away from the primary tumor site and extravasating into distant organs to establish a secondary tumor. The loss of epithelial expression markers by neoplastic breast cancer cells in the primary tumor is believed to play a pivotal role during breast cancer metastasis. This phenomenon is the hallmark of the epithelial mesenchymal transition (EMT) process. Gene expression microarrays were performed to investigate key functional elements on an in vitro metastasis model derived from human breast epithelial cells (MCF-10F) treated with 17-beta estradiol. Functional profiling of dysregulated genes revealed progressive changes in the integrin signaling pathway, and epithelial-mesenchymal transition. In tumorigenic cells, the levels of E-cadherin, desmoplakin and various keratins were low, whereas SLUG, integrin beta 1 and fibronectin were high. SLUG, a zinc finger transcription factor acting as a transcriptional repressor, was defined as a promising target which led us establishing a SLUG-centered hypothetical pathway from the profile of dysregulated genes.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.