Show simple item record

dc.contributor.advisorNagar, Swati V.
dc.creatorYoussef, Amir Samaan Bishara
dc.date.accessioned2020-11-05T16:15:52Z
dc.date.available2020-11-05T16:15:52Z
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/20.500.12613/3903
dc.description.abstractGastroparesis is a disorder characterized by delayed gastric emptying due to chronic abnormal gastric motility. Prokinetic agents such as domperidone and metoclopramide are the cornerstone in treatment of gastroparesis. Although these medications have been used for decades, essential information about their metabolism is not available. Lack of knowledge about the metabolites formed in the body upon administration of the aforementioned medications as well as the enzymes involved in their metabolism limits key information needed to make sound medical decisions. Accurate and comprehensive identification of the metabolites along with reaction phenotyping of prokinetic agents will ensure safe and effective use of these drugs and hence enhance the clinical outcome. The thesis starts with an introductory chapter which comprises a comprehensive literature review on gastroparesis and the available pharmacological treatment options. The chapter also emphasizes the importance of metabolic profiling of prokinetic agents (domperidone and metoclopramide) and its impact on enhancing the safety and efficacy of these medications. Chapter 2 of this project was aimed to determine phase oxidative and conjugative metabolites of domperidone in the plasma and urine of gastroparesis patients using tandem mass spectrometry. First, the metabolites were identified in in-vitro human subcellular fractions. The knowledge gained in this experiment helped identifying the metabolites in the biological fluids of patients. In total, 12 metabolites including 7 new metabolites were identified, 5 of which were not reported previously. Chapter 3 aimed to identify the cytochrome P450 (CYP) enzymes responsible for the metabolism of metoclopramide. The parent depletion approach was used and a novel LC-MS/MS method was developed and validated to enable metoclopramide quantification. CYP2D6 was showed to the predominant isoform in metoclopramide metabolism; other isoforms also contribute to a minor extent. Chapter 4 discusses the possibility of potential drug-drug interaction (DDI) in the current management practice of gastroparesis. We identified and investigated some frequently used drug combinations that are known to share common metabolic pathways. Domperidone in combination with pioglitazone and ondansetron was evaluated. Results showed that pioglitazone inhibited domperidone metabolism in-vitro. Our experiments did not predict a DDI for the domperidone - ondansetron combination. In summary, the ultimate goal of this thesis was to improve the management of gastroparesis by increasing information about the metabolic disposition of prokinetic agents and to investigate the magnitude of putative drug combinations. The knowledge provided by this work will help in making more effective and less hazardous clinical decisions which will ultimately lead to more successful gastroparesis management.
dc.format.extent188 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPharmaceutical Sciences
dc.subjectDomperidone
dc.subjectDrug Drug Interaction
dc.subjectGastroparesis
dc.subjectMetabolite Identification
dc.subjectMetoclopramide
dc.subjectTriple Quadrupole Mass Spectrometer
dc.titleImprovement of Gastroparesis Management By Addressing Challenges in Drug Metabolism: Studies with Metabolite Identification, Reaction Phenotyping and In Vitro Drug-Drug Interactions
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberParkman, Henry P.
dc.contributor.committeememberKorzekwa, Kenneth
dc.contributor.committeememberArgikar, Upendra
dc.description.departmentPharmaceutical Sciences
dc.relation.doihttp://dx.doi.org/10.34944/dspace/3885
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-11-05T16:15:52Z


Files in this item

Thumbnail
Name:
Youssef_temple_0225E_11487.pdf
Size:
7.899Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record