• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CASPASE-1 ACTIVATION IS CRITICAL FOR ENDOTHELIAL CELL ACTIVATION, MONOCYTE MIGRATION, AND EARLY ATHEROGENESIS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Yin_temple_0225E_11384.pdf
    Size:
    3.373Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2013
    Author
    Yin, Ying
    Advisor
    Yang, Xiao-Feng
    Committee member
    Ashby, Barrie
    Autieri, Michael V.
    Muniswamy, Madesh
    Wang, Hong, 1956 September 19-
    Song, Wenchao
    Department
    Pharmacology
    Subject
    Pharmacology
    Atherosclerosis
    Caspase-1
    Vascular Inflammation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3889
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3871
    Abstract
    Atherosclerosis, considered a chronic inflammatory disease, is the underlying mechanism for several cardiovascular diseases. Hyperlipidemia is the number one risk factor for atherogenesis. Caspase-1 is an inflammatory caspase, which can be activated by the metabolic stresses through pathogen associated molecular patterns (PAMPs)-recognition receptors, (PRR) recognition and inflammasome assembly. Activated caspase-1 can initiate inflammation in multiple ways. Thus, regulating inflammasome components expression is essential to control caspase-1 activation and its subsequent inflammatory processes. I hypothesized that the readiness of inflammasome component expression for caspase-1 activation in tissues is an index for inflammation privilege. Endothelial cells (EC) which are the innermost layer of the vessel and are the critical gatekeeper for monocyte migration. The first step of atherogenesis is activation of ECs, which allows monocyte adhesion and migration into the sub-endothelial layer. I also hypothesized that caspase-1 can sense hyperlipidemia and regulate EC activation and inflammation during early atherogenesis. I first determined the expression profiles of inflammasome components, pro-inflammatory caspases and PRRs is different among tissues, and cardiovascular tissues express relative less PRRs via a database-mining method. According to the readiness of inflammasome components, tissues could be classified into three tiers. The first tier consists of tissues with constitutively expressed inflammasomes. The second tier of tissues includes potentially inducible expression of one inflammasome component. The third tier of tissues has inducible expression of at least two inflammasome components. This three-tier model can be applied to determine the inflammation privilege of tissues in response to pro-inflammatory stimuli. I also demonstrated that hyperlipidemia induced caspase-1 expression and activation in aorta along with the atherogenesis in apolipoprotein E (ApoE)-/- mice with high fat (HF) diet, experimentally. We then generated the ApoE-/-/Casp-1-/- double knockout mice, and found that the ApoE-/-/Casp-1-/- mice contained significantly less atherosclerotic lesion in aortic sinus and less cytokine and chemokine expression in aortic tissues compared with ApoE-/- mice. ApoE-/-/Casp-1-/- mice also had less CD11b+/F4/80- neutrophil and CD11b+/F4/80+ monocyte recruitments into aorta compared with ApoE-/- mice. However, the percentage of monocyte subsets in peryphery blood remained at the same level in between ApoE-/- mice and ApoE-/-/Casp-1-/- mice. I then proposed that perhaps the caspase-1 activation in vascular cells, in ECs played the essential role of controling monocyte migraion. My in vitro data demonstrated that oxidized low density lipoprotein (ox-LDL) and its componnents could induced caspase-1 activation in human aortic ECs (HAECs) through ROS pathway which then led to EC activation and pyroptotic cell death. Deficiency of caspase-1 in aortic EC attenuated hyperlipidemia induced EC activation and inflammtion. Mechanically, I found that caspase-1 deficiency accumulated an anti-atherogenic protein, Sirt-1 in the aorta. Collectively, our data suggested that caspase-1/inflammasome in ECs can sense hyperlipidemia, become activated, drive EC activation, and promote monocyte recruitment and early atherosclerosis.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.