• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    OPEN INNOVATION CONTESTS IN ONLINE MARKETS: IDEA GENERATION AND IDEA EVALUATION WITH COLLECTIVE INTELLIGENCE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    YANG_temple_0225E_10690.pdf
    Size:
    862.0Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2012
    Author
    YANG, YANG
    Advisor
    Chen, Pei-Yu
    Committee member
    Pavlou, Paul A.
    Plehn-Dujowich, Jose M.
    Dong, Yuexiao
    Department
    Business Administration/Management Information Systems
    Subject
    Business
    Information Science
    Information Technology
    Contest Market
    Crowdsourcing Contest
    Innovation Contest
    Innovation Tournament
    Open Evaluation
    Winner Determination
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3878
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3860
    Abstract
    To overcome constrained resources, firms can actively seek innovative opportunities from the external world. This innovation approach, called open innovation (Chesbrough 2003; Hippel 2005; Terwiesch and Ulrich 2009; Terwiesch and Xu 2008), is receiving more and more attention. Facilitated by the global Internet and emerging forms of information technology, it has become very easy for companies to generate large numbers of innovative solutions through the use of online open innovation contests or crowdsourcing contests (Archak and Sundararajan 2009; Terwiesch and Ulrich 2009; Terwiesch and Xu 2008; Yang et al. 2009).For an innovation project to succeed, it is necessary to generate not only a large number of good ideas or solutions, but also to identify those that are "exceptional" (Terwiesch and Ulrich 2009). This dissertation contains three studies that aim to improve our understanding of how best to use contests as a tool to aggregate external resources (collective intelligence) in the generation and evaluation of solutions. The first study views an innovation contest from the innovation seeker's perspective and provides insights on how to improve contest performance. The second study views an innovation contest from the innovation solver's perspective examining the characteristics and strategies of winners and solvers. Finally, in the third study, a new approach to the solution evaluation process is introduced, which is referred to as open evaluation. In this approach, a prediction market is used as an aggregation mechanism to coordinate the crowd in the evaluation of proposed solutions. These three studies make a number of contributions to the literature, addressing core issues in the area of online innovation contests. The analyses, which leverage large-scale empirical data, produce a number of profound results, which can help people to understand how best to use and design innovation contests in an online environment, for idea generation. Further, these studies present a variety of managerial implications associated with the aggregation of individual effort (collective intelligence) to evaluate the ideas that are generated by an innovation contest. We hope that our studies can help open innovation pioneers, such as Google, to systematically generate and identify exceptionally good ideas at much lower costs. By utilizing our findings, we expect that more firms will be able to adopt an open innovation strategy, both systematically and easily.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.