• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Shape Based Object Detection and Recognition in Silhouettes and Real Images

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Yang_temple_0225E_10583.pdf
    Size:
    3.456Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2011
    Author
    Yang, Xingwei
    Advisor
    Latecki, Longin
    Committee member
    Vucetic, Slobodan
    Ling, Haibin
    Shi, Jianbo
    Department
    Computer and Information Science
    Subject
    Computer Science
    Jigsaw Puzzle
    Object Detection
    Shape Retrieval
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3877
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3859
    Abstract
    Shape is very essential for detecting and recognizing objects. It is robust to illumination, color changes. Human can recognize objects just based on shapes, thus shape based object detection and recognition methods have been popular in many years. Due to problem of segmentation, some researchers have worked on silhouettes instead of real images. The main problem in this area is object recognition and the difficulty is to handle shapes articulation and distortion. Previous methods mainly focus on one to one shape similarity measurement, which ignores context information between shapes. Instead, we utilize graph-transduction methods to reveal the intrinsic relation between shapes on 'shape manifold'. Our methods consider the context information in the dataset, which improves the performance a lot. To better describe the manifold structure, we also propose a novel method to add synthetic data points for densifying data manifold. The experimental results have shown the advantage of the algorithm. Moreover, a novel diffusion process on Tensor Product Graph is carried out for learning better affinities between data. This is also used for shape retrieval, which reaches the best ever results on MPEG-7 dataset. As shapes are important and helpful for object detection and recognition in real images, a lot of methods have used shapes to detect and recognize objects. There are two important parts for shape based methods, model construction and object detection, recognition. Most of the current methods are based on hand selected models, which is helpful but not extendable. To solve this problem, we propose to construct model by shape matching between some silhouettes and one hand decomposed silhouette. This weakly supervised method can be used not only learn the models in one object class, but also transfer the structure knowledge to other classes, which has the similar structure with the hand decomposed silhouette. The other problem is detecting and recognizing objects. A lot of methods search the images by sliding window to detect objects, which can find the global solution but with high complexity. Instead, we use sampling methods to reduce the complexity. The method we utilized is particle filter, which is popular in robot mapping and localization. We modified the standard particle filter to make it suitable for static observations and it is very helpful for object detection. Moreover, The usage of particle filter is extended for solving the jigsaw puzzle problem, where puzzle pieces are square image patches. The proposed method is able to reach much better results than the method with Loopy Belief Propagation.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.