• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Generalized Domain Adaptation for Sequence Labeling in Natural Language Processing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    XIAO_temple_0225E_12385.pdf
    Size:
    765.7Kb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2016
    Author
    XIAO, MIN
    Advisor
    Guo, Yuhong
    Committee member
    Guo, Yuhong
    Obradovic, Zoran
    Vucetic, Slobodan
    Chen, Sining, 1978-
    Department
    Computer and Information Science
    Subject
    Computer Science
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3862
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3844
    Abstract
    Sequence labeling tasks have been widely studied in the natural language processing area, such as part-of-speech tagging, syntactic chunking, dependency parsing, and etc. Most of those systems are developed on a large amount of labeled training data via supervised learning. However, manually collecting labeled training data is too time-consuming and expensive. As an alternative, to alleviate the issue of label scarcity, domain adaptation has recently been proposed to train a statistical machine learning model in a target domain where there is no enough labeled training data by exploiting existing free labeled training data in a different but related source domain. The natural language processing community has witnessed the success of domain adaptation in a variety of sequence labeling tasks. Though the labeled training data in the source domain are available and free, however, they are not exactly as and can be very different from the test data in the target domain. Thus, simply applying naive supervised machine learning algorithms without considering domain differences may not fulfill the purpose. In this dissertation, we developed several novel representation learning approaches to address domain adaptation for sequence labeling in natural language processing. Those representation learning techniques aim to induce latent generalizable features to bridge domain divergence to enable cross-domain prediction. We first tackle a semi-supervised domain adaptation scenario where the target domain has a small amount of labeled training data and propose a distributed representation learning approach based on a probabilistic neural language model. We then relax the assumption of the availability of labeled training data in the target domain and study an unsupervised domain adaptation scenario where the target domain has only unlabeled training data, and give a task-informative representation learning approach based on dynamic dependency networks. Both works are developed in the setting where different domains contain sentences in different genres. We then extend and generalize domain adaptation into a more challenging scenario where different domains contain sentences in different languages and propose two cross-lingual representation learning approaches, one is based on deep neural networks with auxiliary bilingual word pairs and the other is based on annotation projection with auxiliary parallel sentences. All four specific learning scenarios are extensively evaluated with different sequence labeling tasks. The empirical results demonstrate the effectiveness of those generalized domain adaptation techniques for sequence labeling in natural language processing.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.