• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chemokine interactions with the serotonin and opioid systems: anatomical and electrophysiological studies in the rat brain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    umi-temple-1053.pdf
    Size:
    5.954Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2008
    Author
    Heinisch, Silke
    Advisor
    Kirby, Lynn
    Committee member
    Adler, Martin W.
    Barbe, Mary F.
    Black, Mark M.
    Brailoiu, Eugen
    Unterwald, Ellen M.
    Department
    Anatomy
    Subject
    Biology, Anatomy
    Biology, Neuroscience
    Biology, Cell
    Chemokines
    Serotonin
    Mu-opioid Receptor
    Co-localization
    Electrophysiology
    Heterologous Desensitization
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3686
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3668
    Abstract
    Chemokines, immune proteins that induce chemotaxis and adhesion, and their G-protein coupled receptors distribute throughout the central nervous system (CNS), regulate neuronal patterning, and mediate neuropathology. These chemo-attractant molecules may provide a neuro-immune "link" by regulating CNS systems. The purpose of this study was to investigate the interactions of specific chemokines, stromal cell-derived factor (SDF)-1a/CXCL12, and fractalkine/CX3CL1, and their receptors, CXCR4 and CX3CR1, with the serotonin (5-hydroxytryptamine; 5-HT) and opioid systems using anatomical and electrophysiological techniques in the rat brain. In the serotonin dense midbrain raphe nuclei (RN), SDF-1a, CXCR4, fractalkine and CX3CR1 co-localize over 70% with 5-HT neurons. CX3CR1 also localizes to microglia in the RN and hippocampus. Functionally, SDF-1a (10 nM) increases spontaneous inhibitory postsynaptic current (sIPSC) frequency and evoked IPSC (eIPSC) amplitude, while decreasing paired-pulse ratio (PPR) selectively in 5-HT neurons, thus stimulating presynaptic GABA release at these neurons. Alternatively, fractalkine (10 nM) increases sIPSC and eIPSC amplitude without changing PPR selectively in 5-HT neurons, thereby elevating the postsynaptic GABA receptor number or sensitivity. These results are dose-dependent and receptor-mediated. Chemokine interactions with serotonin, a neurotransmitter regulating mood, may lead to therapies for depression comorbid with immune diseases. Additional immunohistochemical analysis in the brain shows CXCR4 and CX3CR1 neuronal co-localization with the mu-opioid receptor (MOR) in the hippocampus, cingulate cortex, periaqueductal grey (PAG), nucleus accumbens, ventral tegmental area, globus pallidus, but not in the striatum or habenular nuclei, suggesting region specific receptor interactions. Electrophysiological recordings following morphine, SDF-1?? or fractalkine in vitro treatment reveal morphine (10 ?M)-mediated hyperpolarization of the membrane potential and reduction of the input resistance of PAG neurons, however, SDF-1??and fractalkine at 10 nM do not impact either parameter. In combination, SDF-1? inhibits morphine's actions in all PAG neurons tested, and fractalkine blocks morphine-mediated changes in 60% of PAG neurons examined. Thus, CXCR4 as well as CX3CR1, although less consistently, both appear to desensitize MOR at the neuronal level. Chemokine-opioid receptor interactions may mediate novel mechanisms to treat neuro-inflammatory pain and opiate abuse. The combined anatomical and electrophysiological results support chemokines as neuromodulatory proteins that may provide communication between the nervous and immune systems.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.