Show simple item record

dc.contributor.advisorSon, Young-Jin
dc.contributor.advisorBarbe, Mary F.
dc.creatorSkuba, Andrew
dc.date.accessioned2020-11-05T15:01:59Z
dc.date.available2020-11-05T15:01:59Z
dc.date.issued2014
dc.identifier.other904556509
dc.identifier.urihttp://hdl.handle.net/20.500.12613/3580
dc.description.abstractAfter injury, dorsal root (DR) axons regenerate in the peripheral nervous system (PNS), but turn around or stop at the dorsal root entry zone (DREZ), the entrance into the central nervous system (CNS). Examination of the dynamic axon regeneration that occurs following injury to the DR provides the opportunity to advance our understanding of what happens to sensory axons as they approach and arrive at the DREZ and expands our knowledge of sensory axon regeneration failure at the entrance to the spinal cord. Additionally, findings from these studies may offer potential avenues to provide insight into regeneration failure elsewhere in the central nervous system. Nevertheless, our understanding of the cellular and molecular processes underlying the failure of DR axons to regenerate through the DREZ is incomplete. The goal of my thesis work was to determine whether application of the time lapse-in vivo imaging technique is feasible and useful in studying dorsal root regeneration. I have also applied recently developed post-mortem analyses to the axons monitored in vivo, which provided additional insights into the mechanisms that prevent axon regeneration at the DREZ. Results in Chapters 2 and 3 demonstrate that wide-field microscopy is indeed feasible and useful for monitoring regenerating sensory axons immediately before, during, and in the days to weeks after lumbar (L5) DR crush. I was surprised to find that most axons were immobilized abruptly and chronically at the CNS portion of the DREZ, with their axon tips and shafts exhibiting features of differentiated nerve terminals. This observation raises the possibility, which has not been appreciated previously, that DR axons stop at the DREZ because their regeneration is terminated prematurely by forming synaptic contacts with unidentified postsynaptic cells. To confirm the immobilization of DR axons at the DREZ, I applied two-photon microscopy to examine the axon behavior at the DREZ at high resolution. Results described in Chapter 4 confirm those obtained with the time-lapse imaging performed with wide-field microscopy: axons arrested soon after their arrival at the DREZ did not exhibit even subtle movements. Light microscopic analyses of the failed axon tips monitored in vivo demonstrated that almost all axons stopped at the CNS territory of the DREZ, and that axon tips and adjacent shafts intensely immunolabeled with synapse markers. Ultrastructural analyses revealed that numerous axonal profiles had the characteristic features of pre- but not postsynaptic endings. Findings from these studies lead us to speculate that most, if not all, dorsal root axons become arrested as they enter the CNS territory of the DREZ by forming presynaptic terminals on non-neuronal cellular elements that differ from the dystrophic-like endings formed by a few axons. In the chapter 5, I discuss what I have found to be the key factors for successful monitoring of regenerating dorsal root axons in living animals; the feasibility, usefulness and limitations of the available techniques and future directions for studying spinal root injury and regeneration. My thesis work represents the first to employ in vivo imaging to study DR regeneration directly in living animals. This approach was more challenging to develop than we had anticipated but provided unexpected insights into the mechanisms preventing sensory nerve regeneration. Continuous application of the powerful in vivo imaging technique in combination with conventional analyses will elucidate critically important issues that previous static analyses could not decipher.
dc.format.extent173 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectCellular Biology
dc.subjectNeurosciences
dc.subjectDorsal Root Entry Zone
dc.subjectIn Vivo Imaging
dc.subjectMicroscopy
dc.subjectRegeneration
dc.subjectSensory Nerve
dc.titleIn vivo imaging analysis of the regeneration failure of dorsal root axons in adult mice
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberSon, Young-Jin
dc.contributor.committeememberBarbe, Mary F.
dc.contributor.committeememberGallo, Gianluca
dc.contributor.committeememberKim, Seonhee
dc.contributor.committeememberSmith, George M.
dc.contributor.committeememberRamirez, Servio H.
dc.description.departmentCell Biology
dc.relation.doihttp://dx.doi.org/10.34944/dspace/3562
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-11-05T15:01:59Z


Files in this item

Thumbnail
Name:
TETDEDXSkuba-temple-0225E-11886.pdf
Size:
8.656Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record