• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    CAVEOLAE AS SPATIO-TEMPORAL COMPARTMENTS FOR ROS/RNS GENERATION AND NITROXIDATIVE STRESS SIGNALING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXSingh-temple-0225E-11795.pdf
    Size:
    3.620Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Singh, Harinder
    Advisor
    Rizzo, Victor
    Committee member
    Popoff, Steven N.
    Scalia, Rosario
    Goldfinger, Lawrence
    Chatterjee, Shampa
    Department
    Cell Biology
    Subject
    Biology
    Cellular Biology
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3576
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3558
    Abstract
    During inflammatory conditions excessive production of reactive oxygen (ROS) and nitrogen species (RNS), peroxynitrite, is implicated in the development of vascular pathologies. Our previous studies showed that both NADPH oxidase enzyme complexes and eNOS localize to endothelial caveolae microdomains. Additionally, caveolae internalization has been shown as an activating mechanism for enzyme eNOS. However, roles of caveolae in ROS/RNS generation and downstream signaling roles in activating endothelial cells are not well known. Hypothesis: Caveolae act as, a) micro-environments in providing spatio-temporal reaction compartments for ROS/RNS generation, tyrosine nitration of proteins, b) platforms to propagate localized nitroxidative signaling in inducing endothelial cell activation and dysfunction (ICAM-1, VCAM-1 expression), and c) intracellular redox signaling endosomes to regulate adhesion molecule expression. Objectives: The aim of the study was to investigate whether, a) caveolae compartmentalize ROS, regulate localized tyrosine nitration of proteins, b) nitroxidative-signaling in the endothelium is compartmentalized in caveolae, c) dynamin-2-dependent internalization of caveoale is important for activating redox signaling, and d) caveolae compartments can be targeted to reduce endothelial ROS Methods and results: Cultured primary bovine aortic endothelial cells were stimulated with TNFα to generate ROS/RNS. Blockade of NADPH oxidase (gp91ds-tat) or scavenging of peroxynitrite (Uric acid) inhibited TNFα-induced protein tyrosine nitration, activation of the NFkB, and upregulation of ICAM-1/VCAM-1 expression. To test the role of caveolae in this process, cultured cells were depleted of caveolin-1 (siRNA). Similar to inhibitors, TNFα failed to induce protein-tyrosine nitration, activate NFkB or enhance adhesion molecule expression in cells lacking caveolin-1. These findings were corroborated in vivo using Cav1KO animals. Our results show that several caveolar residing proteins were nitrated on tyrosine in response to TNFα. Here, immunoprecipitation of cell lysates with an anti-nitrotyrosine antibody revealed Src-family kinases (SFK) in the precipitated fraction. Moreover, SFK nitration was lost in cells depleted of caveolin-1. Given that SFK nitration is associated with enzyme activation, cells were pretreated with PP2 to inhibit SFK activity. We found that PP2 attenuated the NFkB and adhesion molecule pathway activated by TNFα. Depletion of dynamin-2 (Dyn2siRNA) or inhibiting GTPase activity (Dynasore) also showed reductions in ROS generation, NFkB redox signaling and ICAM-1/VCAM-1 expression. Development of caveolae targeting peptide tagged with gp91ds-tat showed inhibitions in compartmentalized ROS production. Conclusions: Caveolae act as sites for ROS/RNS production where resident redox-sensitive second messengers are activated and propagate signals that regulate endothelial inflammatory phenotype. Targeting NADPH oxidase enzyme specifically in caveolae can be used a therapeutic strategy to limit vascular oxidative stress.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.