• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    HYPOCRETIN/OREXIN AND THE VENTRAL MIDBRAIN: TOPOGRAPHY AND FUNCTION ASSOCIATED WITH PSYCHOSTIMULANT-TAKING AND AFFECT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXSimmons-temple-0225E-13 ...
    Size:
    3.839Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Simmons, Steven James
    Advisor
    Muschamp, John W. (John Whitney), 1974-
    Committee member
    Unterwald, Ellen M.
    Kirby, Lynn
    Liu-Chen, Lee-Yuan
    Moorman, David E.
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Pharmacology
    Behavioral Sciences
    Addiction
    Affect
    Cocaine
    Dopamine
    Hypocretin/orexin
    Reward
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3574
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3556
    Abstract
    Abuse of psychostimulants including cocaine and new synthetic formulations remains an international public health problem and economic burden. Addiction develops consequential to positive and negative drives that underlie “getting” and “staying” high. Dopamine (DA), arising from ventral tegmental area (VTA), projects to ventral striatal targets to encode reward signals and reward prediction. Mesolimbic DA is implicated in both the immediate rewarding effects of psychostimulants, and its hypoactivity underlies negative affect as drug levels decline. Accordingly, modulating inputs to midbrain DA possesses capacity to mediate positive/rewarding and negative/aversive effects of drugs. Hypocretin/orexin (hcrt/ox) is a family of excitatory hypothalamic peptides that projects widely throughout the central nervous system including to VTA DA cells, and hcrt/ox mediates brain reward function and motivation for self-administered drugs. Notably, the first-in-class hcrt/ox receptor antagonist (suvorexant) was approved for management of insomnia in the summer of 2014. Also within the past decade, the caudal division of VTA (termed “tail of VTA” and “rostromedial tegmental nucleus [RMTg]”) was detailed for its ability to negatively regulate VTA DA. Functionally, stimulation of the GABA-producing RMTg population encodes aversion and responds to aversive cues. Curiously, anatomy work depicts the hypothalamus as a principal input to the RMTg although the cellular phenotypes and functions of hypothalamic projections to RMTg have not been fully resolved. Work in this thesis was designed to map hcrt/ox projections to VTA and RMTg in effort to understand functionally-relevant topographical arrangement. In preliminary assessments, we test for the first time the ability of suvorexant to modulate reward and reinforcement associated with psychostimulant use in rats. Additionally, we profile how self-administered cocaine and “bath salt” synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) influence affective states in rats by measuring ultrasonic vocalizations (USVs) and comparing patterns of responding. Subsequently, we test the ability of suvorexant to influence MDPV-taking and affective changes that promote self-administration. Finally, we utilize direct-site pharmacology to assess the degree to which hcrt/ox transmission within VTA and RMTg contributes to motivated responding for and affective processing of self-administered cocaine across two doses. Specifically, we hypothesized that intra-VTA suvorexant would suppress drug-taking by reducing the rewarding value of self-administered cocaine, whereas intra-RMTg hcrt/ox peptide injection would suppress drug-taking by increasing aversive value of self-administered cocaine. We observed that systemic suvorexant effectively reduces motivated cocaine-taking, and that this reduction relates in part to reductions in subjective reward of self-administered cocaine as interpreted by reductions in positively-valenced 50-kHz USVs. Retrograde tracing supports that hcrt/ox projects to both VTA and RMTg without discernible topographical arrangement. Target-site pharmacology finds that intra-VTA suvorexant has no appreciable effects on motivated cocaine-taking but tends to elevate 50-kHz USVs during the pre-drug “anticipation” time epoch in low-dose cocaine self-administering rats (0.375 mg/kg/inf). While intra-RMTg hcrt/ox pre-treatment sparsely affected USVs, 0.3 nmol/hemisphere hcrt/ox significantly enhanced cocaine-taking in low-dose cocaine self-administering rats, and, in high-dose (0.750 mg/kg/inf) cocaine self-administering rats, intra-RMTg hcrt/ox significantly suppressed responding when pre-treated with 1.0 and 3.0 nmol/hemisphere. Collectively, studies within this thesis promote the use of hcrt/ox receptor antagonists as adjunct pharmacotherapy in managing psychostimulant use disorders, although the circuitries through which aberrant motivated behaviors are modulated are not entirely clear. Future work will need to be performed to understand how hcrt/ox transmits to neurochemically-defined cell populations residing within VTA and RMTg—these pathways are recruited for processing stimuli as “rewarding” and “aversive” which are critical contributors in the development of substance use disorders and other psychiatric disorders characterized by dysregulated reward processing.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.