• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Role of Hedgehog signaling in Hepatitis B virus X protein mediated hepatocellular carcinoma

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXSambandam-temple-0225E- ...
    Size:
    2.182Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Sambandam, Vaishnavi
    Advisor
    Feitelson, Mark
    Committee member
    Palter, Karen
    Balciunas, Darius
    Schafmeister, Christian
    Department
    Biology
    Subject
    Oncology
    Biology, Molecular
    Biology
    Cancer Signaling
    Preclinical Research
    Viral Oncology
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3520
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3502
    Abstract
    Hepatitis B virus encoded X protein (HBx) contributes centrally to the pathogenesis of hepatocellular carcinoma (HCC). Aberrant activation of the Hedgehog (Hh) pathway has been linked to cancer. Thus, experiments were designed to test the hypothesis that HBx contributes to HCC via activation of Hh signaling. HBx expression correlated with up-regulation of Hh markers in human liver cancer cell lines, in HBx transgenic mice that developed HCC and in liver samples from HBV infected patients with HCC. The findings in human samples provide clinical validation of those in the HBx transgenic mice (HBxTg), and underscore the relevance of these transgenic mice to disease pathogenesis. Further, blockade of Hh signaling inhibited HBx stimulation of cell migration, anchorage independent growth, HCC tumorigenesis in HBx transgenic mice and tumor growth in xenograft model. These results suggest that the ability of HBx to promote cancer is at least partially dependent upon Hh activation and that activation of Hh signaling appears to be important for the development of HBx associated HCC. HBx also activates pathways that stimulate downstream Hh signaling, such as PI3K/AKT and Ras/Raf/MEK, also referred as non-canonical Hh signaling. Upon canonical Hh inhibition, compensatory activation of these pathways was seen in the presence of HBx in liver cancer cell lines and in HBxTg mice. Individual inhibition of these pathways also down-regulated Gli2 expression in HBx positive cell lines. These data suggests that in addition to canonical Hh signaling, activation of PI3K/AKT and ERK pathways by HBx leads to up-regulation of Gli2 expression in HBV-mediated HCC. This work identifies Hh pathway inhibition as a therapeutic strategy to slow tumor development and this work could lead to combination therapies that target Hh, AKT and ERK pathways, which may prevent or delay the appearance/progression of HCC.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.