• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    TO PEE OR NOT TO PEE: A CHARACTERIZATION OF CANINE BLADDER PHYSIOLOGY FOLLOWING LONG-TERM LOWER SPINAL ROOT TRANSECTION AND SURGICAL REINNERVATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXSalvadeo-temple-0225E-1 ...
    Size:
    10.05Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2019
    Author
    Salvadeo, Danielle Marie
    Advisor
    Ruggieri, Michael R.
    Barbe, Mary F.
    Committee member
    Langford, Dianne
    Rawls, Scott M.
    Lemay, Michel A.
    Pontari, Michel A.
    Department
    Biomedical Sciences
    Subject
    Neurosciences
    Surgery
    Medicine
    Neurogenic Bladder
    Nicotinic Receptor
    Reinnervation
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3516
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3498
    Abstract
    Bladder incontinence in patients who suffer from sacral spinal cord injury can wreak havoc on one's quality of life. A 2012 survey suggests that patients who sustain spinal cord injury prioritize the recovery of bladder function over other faculties. With about 12,000 new spinal cord injury cases reported in the United States each year, finding ways to combat the disabilities that result from lower spinal cord dysfunction should be of utmost importance to the scientific research community. Prior to studying the effects of surgical reinnervation on the bladder after long-term decentralization, it was critical to understand the effects that decentralization had on the integrity of both smooth muscle and intramural nerves of the bladder, the function of which could determine the success of surgical reinnervation. Chapter 2 describes in vivo stimulation, ex vivo smooth muscle contractility studies, and immunohistochemical techniques that were used to assess the condition of the functional components of the bladder. Collective results showed that although pelvic plexus-induced stimulation decreased when decentralization included the bilateral transection of the L7 dorsal root, smooth muscle cells and intramural nerves maintained their function after long-term bladder decentralization. Thus, preservation of at least some nerve activity may allow for successful surgical reinnervation after long-term injury. Following confirmation of smooth muscle and intramural nerve viability after decentralization, we sought to determine if nerve transfer after long-term decentralization restores bladder function in canines. In Chapter 3, we detail both decentralization and surgical reinnervation procedures used in our model. Briefly, decentralization of the bladder included bilateral transection of hypogastric nerves, as well as all spinal roots caudal to L7, with a subset of animals undergoing additional transection of the dorsal root of L7. One year after decentralization, animals that showed consistent loss of sensory and motor function underwent surgical reinnervation, which included the bilateral transfer of part of the obturator nerve to the anterior vesical branch of the pelvic nerve and the semimembranosus branch of the sciatic nerve to the pudendal nerve. Behavioral observations, in vivo stimulation of transferred nerves, and retrograde tracing studies were used to explore the efficacy of reinnervation on both sensory and motor components of bladder function. Ultimately, results showed that the new neuronal pathways created by nerve transfer can restore bladder sensation and possibly motor function in lower motor neuron-lesioned canines. Beyond the effects of surgical reinnervation on bladder function, we were interested in taking a closer look at the mechanisms that dictate function after decentralization and reinnervation (Chapter 3). Based on our previous work that found that transfer of somatic nerves resulted in bladder smooth muscle expression of a nicotinic receptor subunit thought to be expressed primarily in striated muscles, we were interested in assessing changes in the profile of nicotinic receptors responsible for bladder function. Ex vivo smooth muscle contractility studies showed that response to nicotinic receptor agonists were not altered after decentralization or reinnervation. Furthermore, the α1 nicotinic receptor subunit was expressed in bladder smooth muscle across all surgical groups. Future studies are necessary to better elicit the physiological relevance of these nicotinic receptors in the bladder. Additionally, due to the complexity of surgical reinnervation, it was important to understand all contributions to bladder innervation (Chapter 4). We previously identified that cells in the ventral horns of spinal cord levels rostral to the sacral cord can directly innervate the bladder via retrograde tracing. Because these direct inputs were not in proximity of the spinal root transections made during decentralization, we wanted to know how decentralization and reinnervation impacted their effects on the bladder when stimulated. L2-mediated detrusor contractions were significantly decreased by transection of the hypogastric nerves, suggesting that many of the nerves originating from the L2 cord are sympathetic in nature; however, treatment with phentolamine did not completely eliminate the increase in pressure in response to L2 stimulation. Therefore, the remaining inputs likely act upon the bladder through a yet undefined pathway. The quantity of positively labelled cells did not change in sections of the L2 ventral horn across all surgical groups, suggesting no change in the contribution of direct inputs to bladder innervation. Finally, anatomical feasibility of the obturator and semimembranosus branch of the sciatic nerve transfers has been assessed in an unembalmed cadaver, the results of which have not yet been published. Overall, this research gives us reason to believe that surgical reinnervation is a viable option for patients who develop lower neurogenic bladder after injury to the sacral cord, cauda equina, or peripheral nerves mediating bladder function.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.