• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Bounded Surfatron Acceleration in the Presence of Random Fluctuations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXRuizMora-temple-0225M-1 ...
    Size:
    1.440Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2015
    Author
    Ruiz Mora, Africa
    Advisor
    Vainchtein, Dmitri
    Committee member
    Pillapakkam, Shriram
    Aluie, Hussein
    Department
    Mechanical Engineering
    Subject
    Engineering, Mechanical
    Plasma Physics
    Physics
    Adiabatic Invariants
    Chaos
    Dynamical Systems
    Plasma
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3503
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3485
    Abstract
    The mechanisms of acceleration and transport of collisionless plasma in the presence of electromagnetic turbulence (EMT) still remains not fully understood. The particle-EMT interaction can be modelled as the interaction of the particle with a particular wave in the presence of random noise. It has been shown that in such a model the acceleration of the charged particles can be almost free. This effect is known as resonance, which can be explained by the so-called “surfatron” mechanism. We have conducted several numerical simulations for the models with and without the presence of EMT. The turbulence has been modeled as small random fluctuations on the background magnetic field. Particles dynamics consist of two regimes of motion: (i) almost free (Larmor) rotation and (ii) captured (resonance) propagation, which are given by two different sets of invariants. We have determined the necessary conditions for capture and release from resonance for the model without fluctuations, as well as the intrinsic structure of the initial conditions domain for particles in order to be captured. We observed a difference in the orders of magnitude of the dispersion of adiabatic invariant due to the effects of the added fluctuations at the resonance. These results are important to describe the mixing of the different energy levels in the presence of EMT. To understand the impact of the EMT on the system dynamics, we have performed statistical analysis of the effects that different characteristics of the random fluctuations have on the system. The particles' energy gain can be viewed as a random walk over the energy levels, which can be described in terms of the diffusion partial differential equation for the probability distribution function. This problem can be reverse-engineered to understand the nature and structure of the EMT, knowing beforehand the energy distribution of a set of particles.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.