• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Novel Market-based Multi-agent System for Power Balance and Restoration in Power Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXRen-temple-0225E-13311.pdf
    Size:
    8.678Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2018
    Author
    Ren, Qiangguo
    Advisor
    Bai, Li
    Committee member
    Biswas, Saroj K.
    Ji, Bo, 1982-
    Ren, Fei
    Department
    Electrical and Computer Engineering
    Subject
    Electrical Engineering
    Multi-agent System
    Power Network
    Resilient Control
    Supply-demand Balance
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3465
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3447
    Abstract
    Power networks are one of the most complex systems in the field of electrical and computer engineering. In power networks, power supply-demand balancing can be achieved in a static or a dynamic model. In a static model, the power network cannot be easily adapted to intentional or unintentional network topology changes because the network design is predetermined, whereas in a dynamic model, the power network can be dynamically constructed and reconfigured at run-time, which leads to a more nimble, flexible, and stable system. In this dissertation, a novel Market-based Multi-agent System (MMS) is proposed to solve supply-demand balancing and power restoration problems in a dynamic model. The power network is modeled as a market environment consisting of Belief-Desire-Intention (BDI) agents representing three characters: 1) consumer, 2) supplier, and 3) middleman. The BDI agents are able to negotiate power supply and demand of the power network, with consumers exploring the market and exchanging power information with neighboring middlemen and suppliers. So long as all consumers and suppliers establish supply-demand relationships represented in tree data structures, a qualified minimal access structure is found as the lower bound of the system reliability. When contingencies occur, the agents can quickly respond and restore loads guided by the relationships using minimum computational resource. Based on case studies and simulation results, the proposed approach delivers more effective performance of contingencies response and better computation time efficiency as the scale of the power network expands. The proposed MMS shows promises for solving various real-world power supply-demand and restoration problems, and serves as a solid foundation for future power networks refinement and improvement.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.