• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SOY PROTEIN ISOLATE (SPI) “GREEN” SCAFFOLDS WITH ORIENTED MICROCHANNELS FOR APPLICATIONS IN SPINAL CORD INJURY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXRashvand-temple-0225M-1 ...
    Size:
    1.567Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2015
    Author
    Rashvand, Sarvenaz Nina
    Advisor
    Lelkes, Peter I.
    Har-el, Yah-el
    Committee member
    Lazarovici, Philip
    Department
    Bioengineering
    Subject
    Engineering, Biomedical
    Freeze Casting
    Scaffold
    Soy Protein
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3449
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3431
    Abstract
    Every year, accidents, falls, sport injuries and other incidents cause thousands of people to suffer spinal cord injury (SCI). In the United States alone, it is estimated that the number of Americans that live with SCI is around 259,000, with 12,000 new cases that happen annually (1). These injuries lead to spinal cord damages expressed by massive nerve tract degeneration followed by neurological loss, paralysis and disabilities. Therapy of SCI patients with non-steroidal anti-inflammatory drugs (NSAIDs) help in diminishing secondary injury and lessen pain and swelling. However these drugs do not promote tissue repair. Therefore there is an unmet clinical need to develop technologies and therapeutic strategies that compensate loss of neuronal tissue, support and facilitate reestablishment of nerve tracks connectivity in the injured spinal cord. Recent progress in nerve regeneration indicates that a tissue engineering approach using soft tissue scaffolds, stem cells and neurotrophins, can lead to a partial therapy in animal models of SCI. Bioengineered scaffolds prepared by freeze casting technology provide an experimental tool for guidance of regenerating neuronal tracts and/or axons and therefore are useful for regeneration of injured spinal cord. In this engineering approach for scaffold preparation, temperature controlled directional solidification of an aqueous polymer(s) solution creates channels of different diameters that can direct axonal outgrowth of neurons populating the scaffold. In a previous study from our laboratory, such scaffolds promoted differentiation of neurons, a process facilitated by co-population of the scaffold’s channels with endothelial cells. “Green” plant proteins, such as soybean proteins, are becoming an attractive alternative source of natural polymers for a variety of biomedical applications including scaffold fabrication for neuronal tissue regeneration. In the present study, we developed a second generation of improved, microchanneled composite scaffolds from gelatin and soy protein isolate cross-linked with genipin (2 w/v %, 0.5 w/v %, 1 w/v %, respectively). The fabrication of these scaffolds by a controlled freeze drying technique, their mechanical properties (stiffness, ~3-4 kPa) as well as their uniform longitudinal channels of a diameter of ~30-55 µm is described. Preliminary biocompatibility experiments in 2D and 3D using the above mentioned scaffolds populated with either undifferentiated PC12 cells or nerve growth factor differentiated PC12 cells indicated partial biocompatibility of the scaffolds for neuronal growth. Improving the biocompatibility of these composite scaffolds is under investigation in our laboratory.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.