Show simple item record

dc.creatorGolalikhani, M.
dc.creatorLei, Q.
dc.creatorChandrasena, Ravini
dc.creatorKasaei, L.
dc.creatorPark, H.
dc.creatorBai, J.
dc.creatorOrgiani, P.
dc.creatorCiston, J.
dc.creatorSterbinsky, G. E.
dc.creatorArena, D. A.
dc.creatorShafer, P.
dc.creatorArenholz, E.
dc.creatorDavidson, Bruce
dc.creatorMillis, A. J.
dc.creatorGray, A. X.
dc.creatorXi, X. X.
dc.date.accessioned2020-04-20T15:29:43Z
dc.date.available2020-04-20T15:29:43Z
dc.date.issued2018-05-07
dc.identifier.citationGolalikhani, M., Lei, Q., Chandrasena, R.U., Kasaei, L., Park, H., Bai, J., Orgiani, P., Ciston, J., Sterbinsky, G. E., Arena, D. A., Shafer, P., Arenholz, E., Davidson, B. A., Millis, A. J., Gray, A. X., Xi, X. X. (2018) Nature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films. Nature Communications 9: 1-8. https://doi.org/10.1038/s41467-018-04546-5.
dc.identifier.issn2041-1723
dc.identifier.doihttp://dx.doi.org/10.34944/dspace/20
dc.identifier.urihttp://hdl.handle.net/20.500.12613/33
dc.description.abstractThe nature of the metal-insulator transition in thin films and superlattices of LaNiO3 only a few unit cells in thickness remains elusive despite tremendous effort. Quantum confinement and epitaxial strain have been evoked as the mechanisms, although other factors such as growth-induced disorder, cation non-stoichiometry, oxygen vacancies, and substrate–film interface quality may also affect the observable properties of ultrathin films. Here we report results obtained for near-ideal LaNiO3 films with different thicknesses and terminations grown by atomic layer-by-layer laser molecular beam epitaxy on LaAlO3 substrates. We find that the room-temperature metallic behavior persists until the film thickness is reduced to an unprecedentedly small 1.5 unit cells (NiO2 termination). Electronic structure measurements using X-ray absorption spectroscopy and first-principles calculation suggest that oxygen vacancies existing in the films also contribute to the metal-insulator transition.
dc.format.extent8 pages
dc.languageEnglish
dc.language.isoeng
dc.relation.ispartofOpen Access Publishing Fund (OAPF)
dc.relation.haspartNature Communications, Vol. 9, Article 2206
dc.relation.isreferencedbyNature Publishing Group
dc.rightsAttribution CC BY
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectElectronic properties and materials
dc.subjectPhase transitions and critical phenomena
dc.subjectSurfaces, interfaces and thin films
dc.titleNature of the metal-insulator transition in few-unit-cell-thick LaNiO3 films
dc.typeText
dc.type.genreJournal article
dc.description.departmentPhysics
dc.relation.doihttps://doi.org/10.1038/s41467-018-04546-5
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.schoolcollegeTemple University. College of Science and Technology
dc.description.sponsorTemple University Libraries Open Access Publishing Fund, 2017-2018 (Philadelphia, Pa.)|
dc.creator.orcid0000-0001-8766-0965
dc.creator.orcid0000-0003-1616-9380
dc.temple.creatorGolalikhani, M.
dc.temple.creatorLei, Q.
dc.temple.creatorChandrasena, R.U.
dc.temple.creatorKasaei, L.
dc.temple.creatorDavidson, B. A.
dc.temple.creatorGray, A. X.
dc.temple.creatorXi, X. X.
refterms.dateFOA2020-04-20T15:29:43Z


Files in this item

Thumbnail
Name:
Xi-JournalArticle-2018.pdf
Size:
1.339Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY