Show simple item record

dc.contributor.advisorLing, Haibin
dc.creatorPang, Yu
dc.date.accessioned2020-11-04T17:00:57Z
dc.date.available2020-11-04T17:00:57Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.12613/3383
dc.description.abstractVisual tracking is one of the fundamental problems in computer vision. This topic has been a widely explored area attracting a great amount of research efforts. Over the decades, hundreds of visual tracking algorithms, or trackers in short, have been developed and a great packs of public datasets are available alongside. As the number of trackers grow, it then becomes a common problem how to evaluate who is a better tracker. Many metrics have been proposed together with tons of evaluation datasets. In my research work, we first make an application practice of tracking multiple objects in a restricted scene with very low frame rate. It has a unique challenge that the image quality is low and we cannot assume images are close together in a temporal space. We design a framework that utilize background subtraction and object detection, then we apply template matching algorithms to achieve the tracking by detection. While we are exploring the applications of tracking algorithm, we realize the problem when authors compare their proposed tracker with others, there is unavoidable subjective biases: it is non-trivial for the authors to optimize other trackers, while they can reasonably tune their own tracker to the best. Our assumption is based on that the authors will give a default setting to other trackers, hence the performances of other trackers are less biased. So we apply a leave-their-own-tracker-out strategy to weigh the performances of other different trackers. we derive four metrics to justify the results. Besides the biases in evaluation, the datasets we use as ground truth may not be perfect either. Because all of them are labeled by human annotators, they are prone to label errors, especially due to partial visibility and deformation. we demonstrate some human errors from existing datasets and propose smoothing technologies to detect and correct them. we use a two-step adaptive image alignment algorithm to find the canonical view of the video sequence. then use different techniques to smooth the trajectories at certain degrees. The results show it can slightly improve the trained model, but would overt if overcorrected. Once we have a clear understanding and reasonable approaches towards the visual tracking scenario, we apply the principles in multi-target tracking cases. To solve the problem, we formulate it into a multi-dimensional assignment problem, and build the motion information in a high-order tensor framework. We propose to solve it using rank-1 tensor approximation and use a tensor power iteration algorithm to efficiently obtain the solution. It can apply in pedestrian tracking, aerial video tracking, as well as curvalinear structure tracking in medical video. Furthermore, this proposed framework can also fit into the affinity measurement of multiple objects simultaneously. We propose the Multiway Histogram Intersection to obtain the similarities between histograms of more than two targets. With the solution of using tensor power iteration algorithm, we show it can be applied in a few multi-target tracking applications.
dc.format.extent137 pages
dc.language.isoeng
dc.publisherTemple University. Libraries
dc.relation.ispartofTheses and Dissertations
dc.rightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectComputer Science
dc.subjectGround Truth
dc.subjectObject Tracking
dc.subjectPerformance Evaluate
dc.subjectTensor
dc.titleObject Trackers Performance Evaluation and Improvement with Applications using High-order Tensor
dc.typeText
dc.type.genreThesis/Dissertation
dc.contributor.committeememberLatecki, Longin
dc.contributor.committeememberTan, Chiu C.
dc.contributor.committeememberYan, Qimin
dc.description.departmentComputer and Information Science
dc.relation.doihttp://dx.doi.org/10.34944/dspace/3365
dc.ada.noteFor Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
dc.description.degreePh.D.
refterms.dateFOA2020-11-04T17:00:57Z


Files in this item

Thumbnail
Name:
TETDEDXPang-temple-0225E-13933.pdf
Size:
19.48Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record