• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Display statistics

    Discovery, Biological and Structural Characterization of ON108600, a Novel Kinase Inhibitor in Triple Negative Breast Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXPadgaonkar-temple-0225E ...
    Size:
    15.25Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Padgaonkar, Amol
    Advisor
    Reddy, E. Premkumar
    Graña-Amat, Xavier
    Committee member
    Shore, Scott K.
    Liebermann, Dan A., 1949-
    Testa, Joseph R.
    Department
    Molecular Biology and Genetics
    Subject
    Biology, Molecular
    Cellular Biology
    Oncology
    Breast Cancer Stem Cells
    Kinase
    Taxol Resistance
    Triple Negative Breast Cancer
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3375
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3357
    Abstract
    Selective killing of tumor cells requires the identification of drug targets critical to pathways that drive or support cancer progression. Protein kinases are an important class of intracellular enzymes involved in the regulation of biochemical pathways, deregulation of these kinases has been strongly implicated in cancer progression. To identify possible oncogenic kinases to which tumor cells might be selectively addicted, we screened the ON108 series of ATP-mimetic small molecule inhibitors in various triple negative breast cancer (TNBC) and normal cell lines. This approach led us to the identification of a novel kinase inhibitor, ON108600. We first examined the in vitro and in vivo effects of ON108600. ON108600 was found to be a potent inhibitor of Casein Kinase 2 (CK2) and the Dual-Specificity-Tyrosine (Y)-Phosphorylation-Regulated-Kinase (DYRK) family of serine-threonine kinases, both of which have been implicated in cancer progression. ON108600 showed broad-spectrum anti-proliferative and cytotoxic activity in multiple TNBC cell lines whilst having little or no effect on normal cells. Treatment of cancer cells with ON108600 resulted in inhibition of downstream signaling mediated by substrates of CK2. Further, ON108600 selectively arrested cancer cells in the mitotic phase of the cell cycle and activated the caspase-signaling cascade. We next performed x-ray crystallographic studies of ON108600-CK2 to determine the structural basis of ON108600-CK2 interaction. The co-crystal structure of ON108600-CK2 revealed that ON108600 binds in the active site pocket of CK2α wherein it mimics the binding of ATP and GTP in the CK2 active site. Notably, ON108600 mimics not only the shape and electrostatics of ATP/GTP, but also their hydration patterns in the CK2 active site pocket. Structural studies further revealed that ON108600 induces a conformational change in the β4-β5 loop of the catalytic subunit, which is known to interact with the β-regulatory subunit of CK2 and is critical for substrate recognition and activation. Lastly, we examined the efficacy of ON108600 in Triple Negative Breast Cancer (TNBC) and its ability to target and eliminate chemo-resistant Tumor-Initiating Stem Cells (TI-SCs) in TNBC. Clonogenic survival and sphere forming ability of purified CD44high CD24-/low TI-SCs from MDAMB-231 and Hs578t cells was potently inhibited by ON108600 treatment. We also observed that paclitaxel-resistant MDAMB-231 cells had increased levels of the CD44high CD24-/low stem cell- like population that correlated with increased expression of kinases CK2α2, DYRK1A and DYRK1B and these cells were sensitive to ON108600 treatment. Significantly, ON108600 showed robust antitumor efficacy as a single agent in a highly aggressive orthotopic TNBC xenograft model showing ~60% tumor growth inhibition. Immunohistochemical analysis of ON108600 treated tumors showed that a significant percentage of cells were apoptotic, indicating that activation of caspase mediated apoptosis contributes to the mechanism of action of ON108600 in vivo. Taken together, our results demonstrate that ON108600 is a novel and potent inhibitor of the CK2α1, CK2α2, DYRK1A and DYRK1B kinases. ON108600 binds in the active site pocket of CK2α and mimics ATP-GTP binding. ON108600 inhibits CK2-mediated signaling; arrests cancer cells in mitosis and induces apoptotic cell death via activation of caspases. Importantly, ON108600 is able to effectively kill the CD44high CD24-/low breast-cancer stem cell like population from TNBC cells. Finally, taxol-resistant MDAMB-231 TNBC cells express high levels of CD44, CK2α2, DYRK1a and DYRK1b and are sensitive to ON108600 treatment. Our study represents the first attempt to associate protein kinase CK2, DYRK1A and DYRK1B with TNBC and TI-SCs in TNBC and identifies a novel kinase inhibitor, ON108600 which effectively kills TI-SCs and taxol-resistant cells in TNBC.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.