• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of TUScholarShareCommunitiesDateAuthorsTitlesSubjectsGenresThis CollectionDateAuthorsTitlesSubjectsGenres

    My Account

    LoginRegister

    Help

    AboutPeoplePoliciesHelp for DepositorsData DepositFAQs

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    3-D Face Modeling from a 2-D Image with Shape and Head Pose Estimation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TETDEDXOyiniMbouna-temple-0225 ...
    Size:
    3.265Mb
    Format:
    PDF
    Download
    Genre
    Thesis/Dissertation
    Date
    2014
    Author
    Oyini Mbouna, Ralph
    Advisor
    Kong, Seong Gong
    Committee member
    Biswas, Saroj K.
    Silage, Dennis
    Ling, Haibin
    Zhu, Ying
    Department
    Electrical and Computer Engineering
    Subject
    Electrical Engineering
    3-d Face Modeling
    Head Pose Estimation
    Parameters Estimation
    Texture Mapping
    Permanent link to this record
    http://hdl.handle.net/20.500.12613/3373
    
    Metadata
    Show full item record
    DOI
    http://dx.doi.org/10.34944/dspace/3355
    Abstract
    This paper presents 3-D face modeling with head pose and depth information estimated from a 2-D query face image. Many recent approaches to 3-D face modeling are based on a 3-D morphable model that separately encodes the shape and texture in a parameterized model. The model parameters are often obtained by applying statistical analysis to a set of scanned 3-D faces. Such approaches tend to depend on the number and quality of scanned 3-D faces, which are difficult to obtain and computationally intensive. To overcome the limitations of 3-D morphable models, several modeling techniques from 2-D images have been proposed. We propose a novel framework for depth estimation from a single 2-D image with an arbitrary pose. The proposed scheme uses a set of facial features in a query face image and a reference 3-D face model to estimate the head pose angles of the face. The depth information of the subject at each feature point is represented by the depth information of the reference 3-D face model multiplied by a vector of scale factors. We use the positions of a set of facial feature points on the query 2-D image to deform the reference face dense model into a person specific 3-D face by minimizing an objective function. The objective function is defined as the feature disparity between the facial features in the face image and the corresponding 3-D facial features on the rotated reference model projected onto 2-D space. The pose and depth parameters are iteratively refined until stopping criteria are reached. The proposed method requires only a face image of arbitrary pose for the reconstruction of the corresponding 3-D face dense model with texture. Experiment results with USF Human-ID and Pointing'04 databases show that the proposed approach is effective to estimate depth and head pose information with a single 2-D image.
    ADA compliance
    For Americans with Disabilities Act (ADA) accommodation, including help with reading this content, please contact scholarshare@temple.edu
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Temple University Libraries | 1900 N. 13th Street | Philadelphia, PA 19122
    (215) 204-8212 | scholarshare@temple.edu
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.